10 127: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
(Resetting knot page to basic template.)
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
{{Template:Basic Knot Invariants|name=10_127}}
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
n = 10 |
k = 127 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,3,-9,-10,2,-5,7,-6,8,9,-3,-4,5,-7,6,-8,4/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table> |
braid_crossings = 10 |
braid_width = 3 |
braid_index = 3 |
same_alexander = [[10_150]], [[K11n51]], |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<td width=15.3846%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=7.69231%>-8</td ><td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=15.3846%>&chi;</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td>2</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>0</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-15</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-2</td></tr>
<tr align=center><td>-17</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-19</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-21</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table> |
coloured_jones_2 = <math> q^{-3} +2 q^{-4} -4 q^{-5} + q^{-6} +8 q^{-7} -9 q^{-8} -4 q^{-9} +17 q^{-10} -12 q^{-11} -11 q^{-12} +25 q^{-13} -12 q^{-14} -17 q^{-15} +28 q^{-16} -9 q^{-17} -17 q^{-18} +22 q^{-19} -4 q^{-20} -12 q^{-21} +11 q^{-22} -6 q^{-24} +4 q^{-25} -2 q^{-27} + q^{-28} </math> |
coloured_jones_3 = <math>2 q^{-4} -6 q^{-7} +4 q^{-8} +7 q^{-9} +3 q^{-10} -16 q^{-11} -4 q^{-12} +14 q^{-13} +19 q^{-14} -22 q^{-15} -23 q^{-16} +12 q^{-17} +40 q^{-18} -12 q^{-19} -45 q^{-20} +56 q^{-22} +6 q^{-23} -61 q^{-24} -14 q^{-25} +65 q^{-26} +22 q^{-27} -68 q^{-28} -26 q^{-29} +65 q^{-30} +32 q^{-31} -62 q^{-32} -31 q^{-33} +49 q^{-34} +36 q^{-35} -42 q^{-36} -29 q^{-37} +25 q^{-38} +27 q^{-39} -16 q^{-40} -19 q^{-41} +7 q^{-42} +13 q^{-43} -3 q^{-44} -8 q^{-45} +2 q^{-46} +4 q^{-47} - q^{-48} -3 q^{-49} +2 q^{-50} + q^{-51} -2 q^{-53} + q^{-54} </math> |
coloured_jones_4 = <math> q^{-4} +2 q^{-5} -4 q^{-7} -2 q^{-8} -3 q^{-9} +9 q^{-10} +12 q^{-11} -5 q^{-12} -8 q^{-13} -25 q^{-14} +6 q^{-15} +33 q^{-16} +11 q^{-17} +8 q^{-18} -57 q^{-19} -27 q^{-20} +32 q^{-21} +34 q^{-22} +63 q^{-23} -62 q^{-24} -69 q^{-25} -13 q^{-26} +26 q^{-27} +138 q^{-28} -24 q^{-29} -85 q^{-30} -80 q^{-31} -24 q^{-32} +196 q^{-33} +35 q^{-34} -68 q^{-35} -136 q^{-36} -89 q^{-37} +229 q^{-38} +84 q^{-39} -41 q^{-40} -170 q^{-41} -140 q^{-42} +242 q^{-43} +115 q^{-44} -15 q^{-45} -187 q^{-46} -172 q^{-47} +234 q^{-48} +131 q^{-49} +13 q^{-50} -176 q^{-51} -189 q^{-52} +187 q^{-53} +125 q^{-54} +51 q^{-55} -128 q^{-56} -181 q^{-57} +109 q^{-58} +85 q^{-59} +75 q^{-60} -54 q^{-61} -133 q^{-62} +38 q^{-63} +25 q^{-64} +64 q^{-65} + q^{-66} -68 q^{-67} +11 q^{-68} -14 q^{-69} +31 q^{-70} +14 q^{-71} -24 q^{-72} +11 q^{-73} -17 q^{-74} +8 q^{-75} +6 q^{-76} -9 q^{-77} +11 q^{-78} -7 q^{-79} + q^{-80} + q^{-81} -5 q^{-82} +5 q^{-83} - q^{-84} + q^{-85} -2 q^{-87} + q^{-88} </math> |
coloured_jones_5 = <math>2 q^{-4} +2 q^{-6} -2 q^{-7} -6 q^{-8} -6 q^{-9} +6 q^{-10} +4 q^{-11} +15 q^{-12} +12 q^{-13} -14 q^{-14} -28 q^{-15} -15 q^{-16} -8 q^{-17} +30 q^{-18} +56 q^{-19} +23 q^{-20} -34 q^{-21} -52 q^{-22} -70 q^{-23} -11 q^{-24} +79 q^{-25} +97 q^{-26} +45 q^{-27} -26 q^{-28} -125 q^{-29} -125 q^{-30} -5 q^{-31} +102 q^{-32} +158 q^{-33} +124 q^{-34} -64 q^{-35} -206 q^{-36} -183 q^{-37} -43 q^{-38} +178 q^{-39} +304 q^{-40} +146 q^{-41} -152 q^{-42} -335 q^{-43} -284 q^{-44} +51 q^{-45} +400 q^{-46} +399 q^{-47} +31 q^{-48} -389 q^{-49} -509 q^{-50} -149 q^{-51} +393 q^{-52} +594 q^{-53} +237 q^{-54} -365 q^{-55} -660 q^{-56} -321 q^{-57} +344 q^{-58} +707 q^{-59} +388 q^{-60} -326 q^{-61} -741 q^{-62} -433 q^{-63} +301 q^{-64} +767 q^{-65} +478 q^{-66} -289 q^{-67} -775 q^{-68} -511 q^{-69} +251 q^{-70} +779 q^{-71} +549 q^{-72} -217 q^{-73} -750 q^{-74} -570 q^{-75} +131 q^{-76} +709 q^{-77} +598 q^{-78} -70 q^{-79} -611 q^{-80} -579 q^{-81} -47 q^{-82} +502 q^{-83} +557 q^{-84} +107 q^{-85} -353 q^{-86} -469 q^{-87} -188 q^{-88} +218 q^{-89} +377 q^{-90} +201 q^{-91} -93 q^{-92} -258 q^{-93} -195 q^{-94} +6 q^{-95} +157 q^{-96} +152 q^{-97} +42 q^{-98} -73 q^{-99} -105 q^{-100} -54 q^{-101} +19 q^{-102} +59 q^{-103} +47 q^{-104} +8 q^{-105} -25 q^{-106} -33 q^{-107} -16 q^{-108} +9 q^{-109} +13 q^{-110} +14 q^{-111} +7 q^{-112} -9 q^{-113} -10 q^{-114} - q^{-115} -3 q^{-116} +2 q^{-117} +9 q^{-118} + q^{-119} -4 q^{-120} + q^{-121} -3 q^{-122} -3 q^{-123} +3 q^{-124} +2 q^{-125} - q^{-126} + q^{-127} -2 q^{-129} + q^{-130} </math> |
coloured_jones_6 = <math> q^{-3} +2 q^{-4} -2 q^{-7} -4 q^{-8} -8 q^{-9} -3 q^{-10} +9 q^{-11} +16 q^{-12} +13 q^{-13} +8 q^{-14} - q^{-15} -37 q^{-16} -41 q^{-17} -22 q^{-18} +21 q^{-19} +44 q^{-20} +62 q^{-21} +73 q^{-22} -19 q^{-23} -83 q^{-24} -122 q^{-25} -66 q^{-26} -20 q^{-27} +79 q^{-28} +207 q^{-29} +133 q^{-30} +30 q^{-31} -140 q^{-32} -168 q^{-33} -237 q^{-34} -128 q^{-35} +165 q^{-36} +258 q^{-37} +298 q^{-38} +117 q^{-39} +14 q^{-40} -348 q^{-41} -470 q^{-42} -225 q^{-43} +16 q^{-44} +368 q^{-45} +475 q^{-46} +590 q^{-47} -9 q^{-48} -527 q^{-49} -691 q^{-50} -629 q^{-51} -86 q^{-52} +489 q^{-53} +1213 q^{-54} +738 q^{-55} -28 q^{-56} -788 q^{-57} -1288 q^{-58} -950 q^{-59} -38 q^{-60} +1470 q^{-61} +1492 q^{-62} +844 q^{-63} -395 q^{-64} -1602 q^{-65} -1819 q^{-66} -878 q^{-67} +1303 q^{-68} +1954 q^{-69} +1696 q^{-70} +234 q^{-71} -1564 q^{-72} -2423 q^{-73} -1661 q^{-74} +952 q^{-75} +2121 q^{-76} +2292 q^{-77} +783 q^{-78} -1381 q^{-79} -2751 q^{-80} -2189 q^{-81} +659 q^{-82} +2147 q^{-83} +2629 q^{-84} +1119 q^{-85} -1231 q^{-86} -2915 q^{-87} -2479 q^{-88} +484 q^{-89} +2145 q^{-90} +2817 q^{-91} +1314 q^{-92} -1121 q^{-93} -3001 q^{-94} -2667 q^{-95} +308 q^{-96} +2095 q^{-97} +2937 q^{-98} +1528 q^{-99} -905 q^{-100} -2958 q^{-101} -2827 q^{-102} -46 q^{-103} +1822 q^{-104} +2907 q^{-105} +1814 q^{-106} -411 q^{-107} -2582 q^{-108} -2826 q^{-109} -580 q^{-110} +1161 q^{-111} +2490 q^{-112} +1970 q^{-113} +297 q^{-114} -1740 q^{-115} -2399 q^{-116} -1001 q^{-117} +269 q^{-118} +1601 q^{-119} +1699 q^{-120} +834 q^{-121} -702 q^{-122} -1524 q^{-123} -971 q^{-124} -381 q^{-125} +604 q^{-126} +1022 q^{-127} +867 q^{-128} +9 q^{-129} -620 q^{-130} -544 q^{-131} -504 q^{-132} -11 q^{-133} +358 q^{-134} +529 q^{-135} +196 q^{-136} -107 q^{-137} -125 q^{-138} -298 q^{-139} -157 q^{-140} +22 q^{-141} +204 q^{-142} +110 q^{-143} +26 q^{-144} +53 q^{-145} -104 q^{-146} -95 q^{-147} -48 q^{-148} +55 q^{-149} +23 q^{-150} +12 q^{-151} +67 q^{-152} -21 q^{-153} -32 q^{-154} -33 q^{-155} +14 q^{-156} -5 q^{-157} -7 q^{-158} +39 q^{-159} -4 q^{-161} -15 q^{-162} +5 q^{-163} -7 q^{-164} -11 q^{-165} +17 q^{-166} +2 q^{-167} +3 q^{-168} -5 q^{-169} +3 q^{-170} -3 q^{-171} -7 q^{-172} +5 q^{-173} +2 q^{-175} - q^{-176} + q^{-177} -2 q^{-179} + q^{-180} </math> |
coloured_jones_7 = |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 127]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[14, 6, 15, 5], X[15, 20, 16, 1],
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11],
X[19, 12, 20, 13], X[6, 14, 7, 13], X[7, 2, 8, 3]]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 127]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7,
6, -8, 4]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 127]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -14, 2, 16, 18, -6, 20, 10, 12]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 127]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, -2, -2}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 127]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 127]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_127_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 127]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 127]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 6 2 3
7 - t + -- - - - 6 t + 4 t - t
2 t
t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 127]][z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + z - 2 z - z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 127], Knot[10, 150], Knot[11, NonAlternating, 51]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 127]], KnotSignature[Knot[10, 127]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{29, -4}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 127]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 2 3 5 5 5 4 2 2
q - -- + -- - -- + -- - -- + -- - -- + --
9 8 7 6 5 4 3 2
q q q q q q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 127]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 127]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -30 -26 2 -20 3 -12 3 -8 2
q + q - --- - q - --- + q + --- + q + --
22 18 10 6
q q q q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 127]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 4 2 6 2 8 2 4 4 6 4
5 a - 6 a + 2 a + 7 a z - 9 a z + 3 a z + 2 a z - 5 a z +
8 4 6 6
a z - a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 127]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 8 5 7 9 11 4 2
5 a + 6 a + 2 a - 5 a z - 8 a z - 2 a z + a z - 9 a z -
6 2 8 2 10 2 12 2 5 3 7 3
14 a z - 2 a z + a z - 2 a z + 5 a z + 16 a z +
9 3 11 3 4 4 6 4 8 4 10 4
7 a z - 4 a z + 3 a z + 11 a z + 4 a z - 3 a z +
12 4 5 5 7 5 9 5 11 5 6 6
a z - 3 a z - 10 a z - 5 a z + 2 a z - 4 a z -
8 6 10 6 5 7 7 7 9 7 6 8 8 8
2 a z + 2 a z + a z + 3 a z + 2 a z + a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 127]], Vassiliev[3][Knot[10, 127]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 127]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 1 1 1 2 1 3
q + -- + ------ + ------ + ------ + ------ + ------ + ------ +
3 21 8 19 7 17 7 17 6 15 6 15 5
q q t q t q t q t q t q t
2 2 3 3 2 1 3 1
------ + ------ + ------ + ------ + ----- + ----- + ----- + ---- +
13 5 13 4 11 4 11 3 9 3 9 2 7 2 7
q t q t q t q t q t q t q t q t
1
----
5
q t</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 127], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -28 2 4 6 11 12 4 22 17 9 28
q - --- + --- - --- + --- - --- - --- + --- - --- - --- + --- -
27 25 24 22 21 20 19 18 17 16
q q q q q q q q q q
17 12 25 11 12 17 4 9 8 -6 4 2 -3
--- - --- + --- - --- - --- + --- - -- - -- + -- + q - -- + -- + q
15 14 13 12 11 10 9 8 7 5 4
q q q q q q q q q q q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:00, 1 September 2005

10 126.gif

10_126

10 128.gif

10_128

10 127.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 127's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 127 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3849 X14,6,15,5 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X6,14,7,13 X7283
Gauss code -1, 10, -2, 1, 3, -9, -10, 2, -5, 7, -6, 8, 9, -3, -4, 5, -7, 6, -8, 4
Dowker-Thistlethwaite code 4 8 -14 2 16 18 -6 20 10 12
Conway Notation [41,21,2-]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 127 ML.gif 10 127 AP.gif
[{11, 3}, {2, 9}, {8, 10}, {9, 11}, {4, 1}, {3, 8}, {5, 2}, {6, 4}, {7, 5}, {10, 6}, {1, 7}]

[edit Notes on presentations of 10 127]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-13][3]
Hyperbolic Volume 8.89682
A-Polynomial See Data:10 127/A-polynomial

[edit Notes for 10 127's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 10 127's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 29, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_150, K11n51,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (1, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 10 127. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-3        22
-5       110
-7      31 2
-9     21  -1
-11    33   0
-13   22    0
-15  13     -2
-17 12      1
-19 1       -1
-211        1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials