10 150: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_150}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 150 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,-3,9,10,-2,-4,8,-9,3,-6,7,-8,4,-5,6,-7,5/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[10_127]], [[K11n51]], | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=7.69231%>6</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>1</td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>1</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>-q^{21}+3 q^{20}-q^{19}-7 q^{18}+11 q^{17}-16 q^{15}+15 q^{14}+5 q^{13}-21 q^{12}+12 q^{11}+11 q^{10}-21 q^9+6 q^8+15 q^7-16 q^6-q^5+14 q^4-8 q^3-4 q^2+7 q-1-2 q^{-1} + q^{-2} </math> | |
|||
coloured_jones_3 = <math>-q^{43}+2 q^{42}+q^{41}-q^{40}-7 q^{39}+q^{38}+16 q^{37}+q^{36}-24 q^{35}-14 q^{34}+37 q^{33}+26 q^{32}-42 q^{31}-42 q^{30}+45 q^{29}+53 q^{28}-39 q^{27}-62 q^{26}+33 q^{25}+63 q^{24}-24 q^{23}-61 q^{22}+13 q^{21}+57 q^{20}-4 q^{19}-48 q^{18}-10 q^{17}+44 q^{16}+16 q^{15}-30 q^{14}-29 q^{13}+22 q^{12}+30 q^{11}-5 q^{10}-34 q^9-3 q^8+25 q^7+17 q^6-20 q^5-17 q^4+8 q^3+17 q^2-q-11-3 q^{-1} +6 q^{-2} +2 q^{-3} - q^{-4} -2 q^{-5} + q^{-6} </math> | |
|||
coloured_jones_4 = <math>-q^{70}+2 q^{69}+2 q^{68}-4 q^{67}-3 q^{66}-4 q^{65}+13 q^{64}+17 q^{63}-15 q^{62}-29 q^{61}-28 q^{60}+45 q^{59}+83 q^{58}-9 q^{57}-94 q^{56}-117 q^{55}+56 q^{54}+205 q^{53}+70 q^{52}-144 q^{51}-259 q^{50}-5 q^{49}+303 q^{48}+189 q^{47}-118 q^{46}-355 q^{45}-106 q^{44}+315 q^{43}+262 q^{42}-49 q^{41}-362 q^{40}-172 q^{39}+272 q^{38}+260 q^{37}+11 q^{36}-311 q^{35}-198 q^{34}+212 q^{33}+224 q^{32}+61 q^{31}-240 q^{30}-210 q^{29}+136 q^{28}+177 q^{27}+117 q^{26}-149 q^{25}-210 q^{24}+42 q^{23}+106 q^{22}+158 q^{21}-37 q^{20}-167 q^{19}-37 q^{18}+4 q^{17}+140 q^{16}+57 q^{15}-74 q^{14}-49 q^{13}-78 q^{12}+58 q^{11}+73 q^{10}+12 q^9+4 q^8-83 q^7-15 q^6+23 q^5+27 q^4+43 q^3-31 q^2-22 q-14+ q^{-1} +30 q^{-2} -2 q^{-4} -9 q^{-5} -7 q^{-6} +7 q^{-7} + q^{-8} +2 q^{-9} - q^{-10} -2 q^{-11} + q^{-12} </math> | |
|||
coloured_jones_5 = <math>q^{101}-2 q^{100}-3 q^{99}+4 q^{98}+7 q^{97}+3 q^{96}-4 q^{95}-24 q^{94}-25 q^{93}+20 q^{92}+64 q^{91}+61 q^{90}-20 q^{89}-130 q^{88}-156 q^{87}-10 q^{86}+228 q^{85}+315 q^{84}+90 q^{83}-313 q^{82}-525 q^{81}-273 q^{80}+353 q^{79}+789 q^{78}+514 q^{77}-319 q^{76}-1001 q^{75}-824 q^{74}+187 q^{73}+1164 q^{72}+1123 q^{71}-3 q^{70}-1213 q^{69}-1364 q^{68}-221 q^{67}+1185 q^{66}+1513 q^{65}+420 q^{64}-1087 q^{63}-1577 q^{62}-568 q^{61}+968 q^{60}+1559 q^{59}+660 q^{58}-843 q^{57}-1504 q^{56}-705 q^{55}+736 q^{54}+1422 q^{53}+724 q^{52}-632 q^{51}-1333 q^{50}-742 q^{49}+522 q^{48}+1249 q^{47}+767 q^{46}-404 q^{45}-1141 q^{44}-806 q^{43}+245 q^{42}+1033 q^{41}+847 q^{40}-85 q^{39}-871 q^{38}-865 q^{37}-123 q^{36}+695 q^{35}+856 q^{34}+288 q^{33}-456 q^{32}-781 q^{31}-452 q^{30}+217 q^{29}+651 q^{28}+522 q^{27}+27 q^{26}-448 q^{25}-539 q^{24}-206 q^{23}+231 q^{22}+435 q^{21}+321 q^{20}-12 q^{19}-301 q^{18}-324 q^{17}-125 q^{16}+108 q^{15}+256 q^{14}+204 q^{13}+21 q^{12}-136 q^{11}-174 q^{10}-113 q^9+19 q^8+116 q^7+118 q^6+53 q^5-33 q^4-84 q^3-72 q^2-23 q+33+58 q^{-1} +41 q^{-2} -23 q^{-4} -34 q^{-5} -20 q^{-6} +6 q^{-7} +20 q^{-8} +12 q^{-9} +4 q^{-10} -2 q^{-11} -11 q^{-12} -5 q^{-13} +3 q^{-14} +2 q^{-15} + q^{-16} +2 q^{-17} - q^{-18} -2 q^{-19} + q^{-20} </math> | |
|||
coloured_jones_6 = <math>q^{143}-2 q^{142}-q^{141}+2 q^{140}+q^{139}+q^{138}+8 q^{136}-11 q^{135}-18 q^{134}-3 q^{133}+6 q^{132}+25 q^{131}+39 q^{130}+54 q^{129}-41 q^{128}-128 q^{127}-125 q^{126}-52 q^{125}+112 q^{124}+300 q^{123}+383 q^{122}+42 q^{121}-425 q^{120}-700 q^{119}-589 q^{118}+13 q^{117}+898 q^{116}+1484 q^{115}+874 q^{114}-491 q^{113}-1796 q^{112}-2183 q^{111}-1097 q^{110}+1186 q^{109}+3219 q^{108}+2984 q^{107}+652 q^{106}-2453 q^{105}-4374 q^{104}-3558 q^{103}+113 q^{102}+4300 q^{101}+5512 q^{100}+3071 q^{99}-1631 q^{98}-5640 q^{97}-6138 q^{96}-2096 q^{95}+3792 q^{94}+6859 q^{93}+5341 q^{92}+186 q^{91}-5300 q^{90}-7366 q^{89}-3973 q^{88}+2405 q^{87}+6657 q^{86}+6268 q^{85}+1624 q^{84}-4215 q^{83}-7193 q^{82}-4671 q^{81}+1327 q^{80}+5824 q^{79}+6082 q^{78}+2167 q^{77}-3342 q^{76}-6515 q^{75}-4601 q^{74}+792 q^{73}+5081 q^{72}+5612 q^{71}+2322 q^{70}-2717 q^{69}-5873 q^{68}-4491 q^{67}+285 q^{66}+4371 q^{65}+5253 q^{64}+2681 q^{63}-1888 q^{62}-5172 q^{61}-4590 q^{60}-621 q^{59}+3317 q^{58}+4842 q^{57}+3338 q^{56}-560 q^{55}-4056 q^{54}-4615 q^{53}-1874 q^{52}+1680 q^{51}+3944 q^{50}+3873 q^{49}+1121 q^{48}-2270 q^{47}-4009 q^{46}-2912 q^{45}-332 q^{44}+2237 q^{43}+3585 q^{42}+2472 q^{41}-63 q^{40}-2407 q^{39}-2922 q^{38}-1902 q^{37}+64 q^{36}+2108 q^{35}+2588 q^{34}+1596 q^{33}-296 q^{32}-1601 q^{31}-2070 q^{30}-1445 q^{29}+133 q^{28}+1309 q^{27}+1735 q^{26}+1039 q^{25}+125 q^{24}-882 q^{23}-1391 q^{22}-945 q^{21}-202 q^{20}+646 q^{19}+863 q^{18}+857 q^{17}+320 q^{16}-355 q^{15}-640 q^{14}-657 q^{13}-249 q^{12}+10 q^{11}+431 q^{10}+493 q^9+280 q^8+36 q^7-225 q^6-245 q^5-320 q^4-75 q^3+89 q^2+172 q+176+94 q^{-1} +47 q^{-2} -133 q^{-3} -102 q^{-4} -83 q^{-5} -25 q^{-6} +20 q^{-7} +54 q^{-8} +91 q^{-9} +5 q^{-10} + q^{-11} -27 q^{-12} -28 q^{-13} -30 q^{-14} -7 q^{-15} +26 q^{-16} +5 q^{-17} +13 q^{-18} +3 q^{-19} + q^{-20} -11 q^{-21} -7 q^{-22} +5 q^{-23} -2 q^{-24} +2 q^{-25} + q^{-26} +2 q^{-27} - q^{-28} -2 q^{-29} + q^{-30} </math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 150]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 12, 6, 13], X[9, 17, 10, 16], |
|||
X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14], |
|||
X[15, 11, 16, 10], X[11, 6, 12, 7], X[2, 8, 3, 7]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 150]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -4, 8, -9, 3, -6, 7, -8, 4, -5, |
|||
6, -7, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 150]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, -16, -6, -18, -10, -20, -14]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 150]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, -2, 1, 1, 3, -2, -1, 3, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 150]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 150]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_150_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 150]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 150]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 6 2 3 |
|||
7 - t + -- - - - 6 t + 4 t - t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 150]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + z - 2 z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 127], Knot[10, 150], Knot[11, NonAlternating, 51]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 150]], KnotSignature[Knot[10, 150]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{29, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 150]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 3 4 5 6 7 8 |
|||
1 - 2 q + 4 q - 4 q + 5 q - 5 q + 4 q - 3 q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 150]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 150]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 4 6 10 12 14 16 18 22 24 |
|||
1 + q + q + 2 q - q + q - q - q - q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 150]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 4 6 |
|||
-4 2 2 z 4 z 3 z z 4 z z z |
|||
-a + -- + ---- - ---- + ---- + -- - ---- + -- - -- |
|||
2 6 4 2 6 4 2 4 |
|||
a a a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 150]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 2 2 3 |
|||
-4 2 z 3 z 2 z z z 3 z 8 z 5 z 3 z |
|||
-a - -- - -- - --- - --- + --- + -- + ---- + ---- + ---- + ---- + |
|||
2 9 7 5 10 8 6 4 2 9 |
|||
a a a a a a a a a a |
|||
3 3 3 4 4 4 5 5 5 6 |
|||
6 z 8 z 5 z 5 z 9 z 4 z 5 z 12 z 7 z z |
|||
---- + ---- + ---- - ---- - ---- - ---- - ---- - ----- - ---- + -- + |
|||
7 5 3 6 4 2 7 5 3 8 |
|||
a a a a a a a a a a |
|||
6 7 7 7 8 8 |
|||
z 2 z 4 z 2 z z z |
|||
-- + ---- + ---- + ---- + -- + -- |
|||
2 7 5 3 6 4 |
|||
a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 150]], Vassiliev[3][Knot[10, 150]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 150]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 |
|||
3 5 1 q q 5 7 7 2 9 2 |
|||
3 q + 2 q + ---- + - + -- + 2 q t + 2 q t + 3 q t + 2 q t + |
|||
2 t t |
|||
q t |
|||
9 3 11 3 11 4 13 4 13 5 15 5 17 6 |
|||
2 q t + 3 q t + 2 q t + 2 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 150], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 2 2 3 4 5 6 7 8 |
|||
-1 + q - - + 7 q - 4 q - 8 q + 14 q - q - 16 q + 15 q + 6 q - |
|||
q |
|||
9 10 11 12 13 14 15 17 |
|||
21 q + 11 q + 12 q - 21 q + 5 q + 15 q - 16 q + 11 q - |
|||
18 19 20 21 |
|||
7 q - q + 3 q - q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 150's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X4251 X8493 X5,12,6,13 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X11,6,12,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -4, 8, -9, 3, -6, 7, -8, 4, -5, 6, -7, 5 |
Dowker-Thistlethwaite code | 4 8 -12 2 -16 -6 -18 -10 -20 -14 |
Conway Notation | [(21,2)(3,2-)] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{3, 9}, {2, 4}, {1, 3}, {14, 10}, {9, 13}, {11, 14}, {5, 8}, {10, 7}, {8, 6}, {7, 12}, {4, 11}, {12, 5}, {13, 2}, {6, 1}] |
[edit Notes on presentations of 10 150]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 150"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X5,12,6,13 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X11,6,12,7 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -3, 9, 10, -2, -4, 8, -9, 3, -6, 7, -8, 4, -5, 6, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 -16 -6 -18 -10 -20 -14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[(21,2)(3,2-)] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 9}, {2, 4}, {1, 3}, {14, 10}, {9, 13}, {11, 14}, {5, 8}, {10, 7}, {8, 6}, {7, 12}, {4, 11}, {12, 5}, {13, 2}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 150"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 29, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_127, K11n51,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 150"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_127, K11n51,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (1, 1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 150. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|