10 151: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_151}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 151 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,3,-9,-10,2,-4,8,9,-3,-6,7,-8,4,-5,6,-7,5/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
braid_index = 4 | |
|||
same_alexander = [[K11n54]], [[K11n129]], | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=7.69231%>3</td ><td width=7.69231%>4</td ><td width=7.69231%>5</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>-2</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{18}+q^{17}-7 q^{16}+6 q^{15}+10 q^{14}-26 q^{13}+10 q^{12}+31 q^{11}-47 q^{10}+6 q^9+51 q^8-55 q^7-2 q^6+57 q^5-46 q^4-12 q^3+49 q^2-27 q-17+30 q^{-1} -8 q^{-2} -12 q^{-3} +10 q^{-4} -3 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-2 q^{35}+2 q^{34}+2 q^{33}+5 q^{32}-15 q^{31}-6 q^{30}+22 q^{29}+27 q^{28}-38 q^{27}-56 q^{26}+47 q^{25}+99 q^{24}-49 q^{23}-147 q^{22}+36 q^{21}+195 q^{20}-13 q^{19}-238 q^{18}-9 q^{17}+257 q^{16}+46 q^{15}-277 q^{14}-65 q^{13}+265 q^{12}+98 q^{11}-258 q^{10}-110 q^9+223 q^8+135 q^7-191 q^6-141 q^5+142 q^4+150 q^3-99 q^2-137 q+49+120 q^{-1} -13 q^{-2} -92 q^{-3} -10 q^{-4} +60 q^{-5} +20 q^{-6} -32 q^{-7} -20 q^{-8} +15 q^{-9} +12 q^{-10} -5 q^{-11} -5 q^{-12} +3 q^{-14} - q^{-15} </math> | |
|||
coloured_jones_4 = <math>q^{58}+q^{57}-3 q^{56}-6 q^{55}+4 q^{54}+7 q^{53}+17 q^{52}-7 q^{51}-51 q^{50}-9 q^{49}+27 q^{48}+107 q^{47}+37 q^{46}-168 q^{45}-131 q^{44}-18 q^{43}+315 q^{42}+271 q^{41}-260 q^{40}-414 q^{39}-290 q^{38}+515 q^{37}+725 q^{36}-142 q^{35}-700 q^{34}-794 q^{33}+519 q^{32}+1196 q^{31}+179 q^{30}-795 q^{29}-1295 q^{28}+328 q^{27}+1457 q^{26}+514 q^{25}-685 q^{24}-1592 q^{23}+79 q^{22}+1475 q^{21}+735 q^{20}-473 q^{19}-1657 q^{18}-148 q^{17}+1305 q^{16}+848 q^{15}-195 q^{14}-1540 q^{13}-368 q^{12}+978 q^{11}+873 q^{10}+140 q^9-1245 q^8-553 q^7+519 q^6+756 q^5+449 q^4-784 q^3-583 q^2+62 q+461+558 q^{-1} -294 q^{-2} -394 q^{-3} -191 q^{-4} +121 q^{-5} +409 q^{-6} -130 q^{-8} -175 q^{-9} -60 q^{-10} +171 q^{-11} +52 q^{-12} +11 q^{-13} -64 q^{-14} -61 q^{-15} +38 q^{-16} +15 q^{-17} +20 q^{-18} -8 q^{-19} -19 q^{-20} +5 q^{-21} +5 q^{-23} -3 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-2 q^{86}+2 q^{85}+4 q^{83}+5 q^{82}-7 q^{81}-22 q^{80}-q^{79}+10 q^{78}+34 q^{77}+60 q^{76}-18 q^{75}-115 q^{74}-113 q^{73}-24 q^{72}+158 q^{71}+325 q^{70}+168 q^{69}-262 q^{68}-572 q^{67}-473 q^{66}+175 q^{65}+958 q^{64}+1030 q^{63}+70 q^{62}-1290 q^{61}-1796 q^{60}-678 q^{59}+1477 q^{58}+2730 q^{57}+1616 q^{56}-1360 q^{55}-3665 q^{54}-2850 q^{53}+886 q^{52}+4421 q^{51}+4240 q^{50}-67 q^{49}-4887 q^{48}-5597 q^{47}-990 q^{46}+5020 q^{45}+6757 q^{44}+2119 q^{43}-4843 q^{42}-7587 q^{41}-3238 q^{40}+4461 q^{39}+8157 q^{38}+4098 q^{37}-3939 q^{36}-8344 q^{35}-4864 q^{34}+3383 q^{33}+8418 q^{32}+5307 q^{31}-2827 q^{30}-8185 q^{29}-5723 q^{28}+2252 q^{27}+7951 q^{26}+5910 q^{25}-1656 q^{24}-7456 q^{23}-6134 q^{22}+971 q^{21}+6930 q^{20}+6187 q^{19}-209 q^{18}-6116 q^{17}-6228 q^{16}-640 q^{15}+5202 q^{14}+6016 q^{13}+1502 q^{12}-4009 q^{11}-5657 q^{10}-2276 q^9+2758 q^8+4966 q^7+2820 q^6-1410 q^5-4063 q^4-3078 q^3+267 q^2+2944 q+2942+649 q^{-1} -1809 q^{-2} -2498 q^{-3} -1166 q^{-4} +806 q^{-5} +1834 q^{-6} +1306 q^{-7} -79 q^{-8} -1114 q^{-9} -1148 q^{-10} -340 q^{-11} +528 q^{-12} +819 q^{-13} +458 q^{-14} -126 q^{-15} -464 q^{-16} -406 q^{-17} -76 q^{-18} +212 q^{-19} +268 q^{-20} +116 q^{-21} -54 q^{-22} -132 q^{-23} -106 q^{-24} -6 q^{-25} +62 q^{-26} +56 q^{-27} +12 q^{-28} -12 q^{-29} -24 q^{-30} -20 q^{-31} +8 q^{-32} +12 q^{-33} +2 q^{-34} -5 q^{-37} +3 q^{-39} - q^{-40} </math> | |
|||
coloured_jones_6 = <math>q^{120}+q^{119}-3 q^{118}-2 q^{117}-2 q^{116}+q^{115}+2 q^{114}+13 q^{113}+21 q^{112}-8 q^{111}-41 q^{110}-48 q^{109}-17 q^{108}+6 q^{107}+113 q^{106}+183 q^{105}+92 q^{104}-146 q^{103}-357 q^{102}-341 q^{101}-243 q^{100}+327 q^{99}+915 q^{98}+970 q^{97}+231 q^{96}-928 q^{95}-1710 q^{94}-2000 q^{93}-429 q^{92}+2055 q^{91}+3803 q^{90}+3118 q^{89}+94 q^{88}-3635 q^{87}-6799 q^{86}-5086 q^{85}+735 q^{84}+7577 q^{83}+10229 q^{82}+6481 q^{81}-2214 q^{80}-12818 q^{79}-15176 q^{78}-7357 q^{77}+7382 q^{76}+18698 q^{75}+19187 q^{74}+6932 q^{73}-14315 q^{72}-26637 q^{71}-22143 q^{70}-864 q^{69}+22214 q^{68}+32959 q^{67}+22463 q^{66}-7769 q^{65}-32841 q^{64}-37349 q^{63}-14781 q^{62}+17946 q^{61}+41183 q^{60}+37568 q^{59}+3743 q^{58}-31588 q^{57}-46734 q^{56}-27737 q^{55}+9250 q^{54}+42256 q^{53}+46837 q^{52}+14301 q^{51}-26107 q^{50}-49357 q^{49}-35575 q^{48}+1077 q^{47}+39177 q^{46}+50048 q^{45}+20995 q^{44}-20269 q^{43}-47977 q^{42}-38806 q^{41}-4769 q^{40}+34917 q^{39}+49793 q^{38}+24848 q^{37}-14993 q^{36}-44855 q^{35}-39861 q^{34}-9656 q^{33}+29765 q^{32}+47813 q^{31}+28065 q^{30}-8734 q^{29}-39836 q^{28}-39980 q^{27}-15505 q^{26}+22101 q^{25}+43550 q^{24}+31297 q^{23}+47 q^{22}-31223 q^{21}-37992 q^{20}-22209 q^{19}+10784 q^{18}+35021 q^{17}+32471 q^{16}+10341 q^{15}-18165 q^{14}-31284 q^{13}-26575 q^{12}-2302 q^{11}+21452 q^{10}+28161 q^9+17824 q^8-3343 q^7-19019 q^6-24437 q^5-11863 q^4+6209 q^3+17586 q^2+17892 q+7230-5189 q^{-1} -15429 q^{-2} -13277 q^{-3} -4234 q^{-4} +5443 q^{-5} +10909 q^{-6} +9321 q^{-7} +3615 q^{-8} -5026 q^{-9} -7871 q^{-10} -6366 q^{-11} -1807 q^{-12} +2900 q^{-13} +5254 q^{-14} +4911 q^{-15} +740 q^{-16} -1901 q^{-17} -3355 q^{-18} -2721 q^{-19} -952 q^{-20} +1066 q^{-21} +2402 q^{-22} +1415 q^{-23} +571 q^{-24} -589 q^{-25} -1072 q^{-26} -1070 q^{-27} -375 q^{-28} +490 q^{-29} +457 q^{-30} +526 q^{-31} +183 q^{-32} -73 q^{-33} -351 q^{-34} -274 q^{-35} + q^{-36} +3 q^{-37} +131 q^{-38} +102 q^{-39} +72 q^{-40} -56 q^{-41} -65 q^{-42} -7 q^{-43} -29 q^{-44} +12 q^{-45} +15 q^{-46} +29 q^{-47} -8 q^{-48} -12 q^{-49} +5 q^{-50} -7 q^{-51} +5 q^{-54} -3 q^{-56} + q^{-57} </math> | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 151]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 8, 4, 9], X[12, 6, 13, 5], X[9, 17, 10, 16], |
|||
X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14], |
|||
X[15, 11, 16, 10], X[6, 12, 7, 11], X[7, 2, 8, 3]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 151]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5, |
|||
6, -7, 5]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 151]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -12, 2, 16, -6, 18, 10, 20, 14]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 151]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 1, 2, -1, -1, 3, -2, 1, 3, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 151]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 151]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_151_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 151]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 151]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 10 2 3 |
|||
-13 + t - -- + -- + 10 t - 4 t + t |
|||
2 t |
|||
t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 151]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 3 z + 2 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 151], Knot[11, NonAlternating, 54], |
|||
Knot[11, NonAlternating, 129]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 151]], KnotSignature[Knot[10, 151]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{43, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 151]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 3 2 3 4 5 6 |
|||
-5 - q + - + 7 q - 7 q + 8 q - 6 q + 4 q - 2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 151]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 151]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 -4 -2 2 4 6 10 12 14 16 18 |
|||
-q + q - q + 2 q - q + 3 q + 2 q + q - q + q - 2 q - |
|||
20 |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 151]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6 |
|||
-6 3 2 z 6 z 4 z 4 z z |
|||
-1 - a + -- - 2 z - -- + ---- - z - -- + ---- + -- |
|||
2 4 2 4 2 2 |
|||
a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 151]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-6 3 3 z 3 z z 2 z 2 2 z 4 z |
|||
-1 + a - -- - --- - --- + -- + --- + a z + 4 z - ---- + ---- + |
|||
2 7 5 3 a 6 4 |
|||
a a a a a a |
|||
2 3 3 3 3 4 4 |
|||
10 z 3 z 5 z z 3 z 3 4 2 z 6 z |
|||
----- + ---- + ---- + -- - ---- - 2 a z - 7 z + ---- - ---- - |
|||
2 7 5 3 a 6 4 |
|||
a a a a a a |
|||
4 5 5 5 6 6 6 7 |
|||
15 z 2 z 7 z 4 z 5 6 z 3 z 5 z 2 z |
|||
----- - ---- - ---- - ---- + a z + 3 z + -- + ---- + ---- + ---- + |
|||
2 5 3 a 6 4 2 5 |
|||
a a a a a a a |
|||
7 7 8 8 |
|||
5 z 3 z z z |
|||
---- + ---- + -- + -- |
|||
3 a 4 2 |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 151]], Vassiliev[3][Knot[10, 151]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 151]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 3 2 q 3 5 |
|||
4 q + 4 q + ----- + ----- + ---- + --- + --- + 4 q t + 3 q t + |
|||
5 3 3 2 2 q t t |
|||
q t q t q t |
|||
5 2 7 2 7 3 9 3 9 4 11 4 13 5 |
|||
4 q t + 4 q t + 2 q t + 4 q t + 2 q t + 2 q t + 2 q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 151], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 3 10 12 8 30 2 3 4 |
|||
-17 + q - -- + -- - -- - -- + -- - 27 q + 49 q - 12 q - 46 q + |
|||
6 4 3 2 q |
|||
q q q q |
|||
5 6 7 8 9 10 11 12 |
|||
57 q - 2 q - 55 q + 51 q + 6 q - 47 q + 31 q + 10 q - |
|||
13 14 15 16 17 18 |
|||
26 q + 10 q + 6 q - 7 q + q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 151's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3849 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X7283 |
Gauss code | -1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5 |
Dowker-Thistlethwaite code | 4 8 -12 2 16 -6 18 10 20 14 |
Conway Notation | [(21,2)(21,2-)] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {7, 4}, {5, 8}, {10, 13}, {6, 12}, {13, 7}, {12, 3}, {4, 2}, {3, 1}, {2, 6}] |
[edit Notes on presentations of 10 151]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 151"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, 3, -9, -10, 2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 16 -6 18 10 20 14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[(21,2)(21,2-)] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {7, 4}, {5, 8}, {10, 13}, {6, 12}, {13, 7}, {12, 3}, {4, 2}, {3, 1}, {2, 6}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 151"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 43, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n54, K11n129,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 151"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n54, K11n129,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 151. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|