10 154: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 154 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-9,10,-2,-4,8,9,-3,-6,7,-8,4,-5,6,-7,5/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=154|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-9,10,-2,-4,8,9,-3,-6,7,-8,4,-5,6,-7,5/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 11 |

braid_width = 4 |
[[Invariants from Braid Theory|Length]] is 11, width is 4.
braid_index = 4 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 4.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=6.66667%>8</td ><td width=6.66667%>9</td ><td width=6.66667%>10</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=6.66667%>8</td ><td width=6.66667%>9</td ><td width=6.66667%>10</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>25</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>23</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 71: Line 39:
<tr align=center><td>7</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>7</td><td bgcolor=red>1</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{34}-2 q^{33}-q^{32}+5 q^{31}-3 q^{30}-4 q^{29}+6 q^{28}-4 q^{26}+2 q^{25}+2 q^{24}-4 q^{22}+3 q^{21}+3 q^{20}-8 q^{19}+3 q^{18}+5 q^{17}-8 q^{16}+6 q^{14}-4 q^{13}-q^{12}+3 q^{11}+q^6</math> |

coloured_jones_3 = <math>q^{66}-2 q^{65}-q^{64}+2 q^{63}+4 q^{62}-2 q^{61}-7 q^{60}+q^{59}+7 q^{58}+3 q^{57}-6 q^{56}-4 q^{55}+q^{54}+3 q^{53}+4 q^{52}+3 q^{51}-8 q^{50}-11 q^{49}+5 q^{48}+22 q^{47}-4 q^{46}-27 q^{45}-3 q^{44}+34 q^{43}+7 q^{42}-36 q^{41}-11 q^{40}+40 q^{39}+13 q^{38}-41 q^{37}-15 q^{36}+41 q^{35}+18 q^{34}-40 q^{33}-19 q^{32}+33 q^{31}+24 q^{30}-28 q^{29}-21 q^{28}+13 q^{27}+20 q^{26}-6 q^{25}-13 q^{24}-3 q^{23}+7 q^{22}+3 q^{21}+q^{20}-5 q^{19}+3 q^{16}+q^9</math> |
{{Display Coloured Jones|J2=<math>q^{34}-2 q^{33}-q^{32}+5 q^{31}-3 q^{30}-4 q^{29}+6 q^{28}-4 q^{26}+2 q^{25}+2 q^{24}-4 q^{22}+3 q^{21}+3 q^{20}-8 q^{19}+3 q^{18}+5 q^{17}-8 q^{16}+6 q^{14}-4 q^{13}-q^{12}+3 q^{11}+q^6</math>|J3=<math>q^{66}-2 q^{65}-q^{64}+2 q^{63}+4 q^{62}-2 q^{61}-7 q^{60}+q^{59}+7 q^{58}+3 q^{57}-6 q^{56}-4 q^{55}+q^{54}+3 q^{53}+4 q^{52}+3 q^{51}-8 q^{50}-11 q^{49}+5 q^{48}+22 q^{47}-4 q^{46}-27 q^{45}-3 q^{44}+34 q^{43}+7 q^{42}-36 q^{41}-11 q^{40}+40 q^{39}+13 q^{38}-41 q^{37}-15 q^{36}+41 q^{35}+18 q^{34}-40 q^{33}-19 q^{32}+33 q^{31}+24 q^{30}-28 q^{29}-21 q^{28}+13 q^{27}+20 q^{26}-6 q^{25}-13 q^{24}-3 q^{23}+7 q^{22}+3 q^{21}+q^{20}-5 q^{19}+3 q^{16}+q^9</math>|J4=<math>q^{108}-2 q^{107}-q^{106}+2 q^{105}+q^{104}+5 q^{103}-6 q^{102}-5 q^{101}+15 q^{98}-3 q^{97}-5 q^{96}-5 q^{95}-10 q^{94}+12 q^{93}+7 q^{91}+8 q^{90}-9 q^{89}-6 q^{88}-20 q^{87}-4 q^{86}+27 q^{85}+28 q^{84}+9 q^{83}-36 q^{82}-55 q^{81}+4 q^{80}+53 q^{79}+59 q^{78}+q^{77}-90 q^{76}-54 q^{75}+26 q^{74}+91 q^{73}+67 q^{72}-80 q^{71}-94 q^{70}-25 q^{69}+88 q^{68}+119 q^{67}-53 q^{66}-109 q^{65}-61 q^{64}+78 q^{63}+145 q^{62}-36 q^{61}-116 q^{60}-79 q^{59}+74 q^{58}+160 q^{57}-27 q^{56}-120 q^{55}-93 q^{54}+63 q^{53}+164 q^{52}-103 q^{50}-108 q^{49}+25 q^{48}+137 q^{47}+39 q^{46}-49 q^{45}-94 q^{44}-25 q^{43}+65 q^{42}+50 q^{41}+11 q^{40}-41 q^{39}-37 q^{38}-2 q^{37}+20 q^{36}+22 q^{35}+4 q^{34}-9 q^{33}-15 q^{32}-3 q^{31}+q^{30}+6 q^{29}+6 q^{28}-2 q^{27}+q^{26}-5 q^{25}-q^{24}+q^{23}+3 q^{21}+q^{12}</math>|J5=<math>q^{160}-2 q^{159}-q^{158}+2 q^{157}+q^{156}+2 q^{155}+q^{154}-4 q^{153}-7 q^{152}+4 q^{150}+7 q^{149}+6 q^{148}+q^{147}-8 q^{146}-13 q^{145}-3 q^{144}+3 q^{143}+6 q^{142}+11 q^{141}+9 q^{140}-2 q^{139}-4 q^{138}-8 q^{137}-20 q^{136}-14 q^{135}+2 q^{134}+22 q^{133}+38 q^{132}+33 q^{131}-6 q^{130}-50 q^{129}-70 q^{128}-43 q^{127}+30 q^{126}+92 q^{125}+102 q^{124}+32 q^{123}-75 q^{122}-145 q^{121}-114 q^{120}+8 q^{119}+141 q^{118}+187 q^{117}+93 q^{116}-83 q^{115}-220 q^{114}-199 q^{113}-16 q^{112}+195 q^{111}+280 q^{110}+141 q^{109}-129 q^{108}-321 q^{107}-252 q^{106}+33 q^{105}+317 q^{104}+352 q^{103}+64 q^{102}-296 q^{101}-407 q^{100}-158 q^{99}+257 q^{98}+455 q^{97}+224 q^{96}-229 q^{95}-473 q^{94}-274 q^{93}+200 q^{92}+496 q^{91}+301 q^{90}-191 q^{89}-503 q^{88}-321 q^{87}+184 q^{86}+517 q^{85}+333 q^{84}-182 q^{83}-525 q^{82}-352 q^{81}+170 q^{80}+535 q^{79}+378 q^{78}-144 q^{77}-531 q^{76}-408 q^{75}+90 q^{74}+499 q^{73}+443 q^{72}-11 q^{71}-440 q^{70}-447 q^{69}-81 q^{68}+324 q^{67}+426 q^{66}+171 q^{65}-194 q^{64}-354 q^{63}-216 q^{62}+53 q^{61}+244 q^{60}+224 q^{59}+48 q^{58}-124 q^{57}-174 q^{56}-99 q^{55}+24 q^{54}+100 q^{53}+95 q^{52}+33 q^{51}-30 q^{50}-62 q^{49}-41 q^{48}-13 q^{47}+18 q^{46}+27 q^{45}+22 q^{44}+3 q^{43}-5 q^{42}-11 q^{41}-12 q^{40}-5 q^{39}+2 q^{38}+2 q^{37}+5 q^{36}+5 q^{35}+q^{34}-2 q^{33}+q^{32}-5 q^{31}-q^{30}+q^{28}+3 q^{26}+q^{15}</math>|J6=<math>q^{222}-2 q^{221}-q^{220}+2 q^{219}+q^{218}+2 q^{217}-2 q^{216}+3 q^{215}-6 q^{214}-7 q^{213}+3 q^{212}+3 q^{211}+8 q^{210}+q^{209}+11 q^{208}-9 q^{207}-13 q^{206}-6 q^{205}-6 q^{204}+4 q^{203}+28 q^{201}+2 q^{200}+2 q^{199}+q^{198}-11 q^{197}-12 q^{196}-27 q^{195}+3 q^{194}-13 q^{193}+12 q^{192}+33 q^{191}+36 q^{190}+35 q^{189}+2 q^{188}-25 q^{187}-81 q^{186}-76 q^{185}-41 q^{184}+8 q^{183}+97 q^{182}+143 q^{181}+117 q^{180}+18 q^{179}-90 q^{178}-176 q^{177}-234 q^{176}-106 q^{175}+70 q^{174}+216 q^{173}+297 q^{172}+243 q^{171}+61 q^{170}-268 q^{169}-378 q^{168}-375 q^{167}-189 q^{166}+161 q^{165}+484 q^{164}+600 q^{163}+289 q^{162}-42 q^{161}-527 q^{160}-767 q^{159}-583 q^{158}-5 q^{157}+638 q^{156}+869 q^{155}+835 q^{154}+110 q^{153}-708 q^{152}-1196 q^{151}-924 q^{150}-100 q^{149}+766 q^{148}+1458 q^{147}+1060 q^{146}+33 q^{145}-1141 q^{144}-1536 q^{143}-1035 q^{142}+126 q^{141}+1487 q^{140}+1692 q^{139}+860 q^{138}-682 q^{137}-1666 q^{136}-1663 q^{135}-508 q^{134}+1233 q^{133}+1931 q^{132}+1391 q^{131}-269 q^{130}-1599 q^{129}-1955 q^{128}-872 q^{127}+1029 q^{126}+1990 q^{125}+1630 q^{124}-64 q^{123}-1546 q^{122}-2072 q^{121}-1005 q^{120}+958 q^{119}+2018 q^{118}+1718 q^{117}-9 q^{116}-1553 q^{115}-2144 q^{114}-1055 q^{113}+948 q^{112}+2078 q^{111}+1811 q^{110}+52 q^{109}-1569 q^{108}-2259 q^{107}-1199 q^{106}+825 q^{105}+2112 q^{104}+2011 q^{103}+335 q^{102}-1382 q^{101}-2320 q^{100}-1521 q^{99}+340 q^{98}+1823 q^{97}+2135 q^{96}+894 q^{95}-714 q^{94}-1948 q^{93}-1739 q^{92}-466 q^{91}+958 q^{90}+1729 q^{89}+1287 q^{88}+241 q^{87}-962 q^{86}-1344 q^{85}-971 q^{84}-83 q^{83}+739 q^{82}+973 q^{81}+716 q^{80}+40 q^{79}-441 q^{78}-684 q^{77}-486 q^{76}-93 q^{75}+238 q^{74}+408 q^{73}+315 q^{72}+156 q^{71}-104 q^{70}-202 q^{69}-204 q^{68}-124 q^{67}-17 q^{66}+72 q^{65}+134 q^{64}+80 q^{63}+48 q^{62}-3 q^{61}-42 q^{60}-68 q^{59}-46 q^{58}-8 q^{57}-2 q^{56}+21 q^{55}+32 q^{54}+23 q^{53}+3 q^{52}-3 q^{51}-5 q^{50}-14 q^{49}-13 q^{48}-2 q^{47}+2 q^{45}+2 q^{44}+6 q^{43}+4 q^{42}+q^{40}-2 q^{39}+q^{38}-5 q^{37}-q^{36}+q^{33}+3 q^{31}+q^{18}</math>|J7=<math>q^{294}-2 q^{293}-q^{292}+2 q^{291}+q^{290}+2 q^{289}-2 q^{288}+q^{286}-6 q^{285}-4 q^{284}+2 q^{283}+3 q^{282}+10 q^{281}+3 q^{280}-q^{279}+4 q^{278}-11 q^{277}-10 q^{276}-9 q^{275}-8 q^{274}+12 q^{273}+12 q^{272}+7 q^{271}+17 q^{270}+2 q^{269}+2 q^{268}-5 q^{267}-31 q^{266}-11 q^{265}-9 q^{264}-12 q^{263}+3 q^{262}+4 q^{261}+29 q^{260}+48 q^{259}+20 q^{258}+19 q^{257}+5 q^{256}-34 q^{255}-56 q^{254}-95 q^{253}-75 q^{252}-7 q^{251}+38 q^{250}+98 q^{249}+155 q^{248}+145 q^{247}+92 q^{246}-40 q^{245}-179 q^{244}-238 q^{243}-255 q^{242}-176 q^{241}+6 q^{240}+209 q^{239}+381 q^{238}+435 q^{237}+292 q^{236}+64 q^{235}-244 q^{234}-537 q^{233}-630 q^{232}-532 q^{231}-194 q^{230}+299 q^{229}+707 q^{228}+929 q^{227}+841 q^{226}+355 q^{225}-289 q^{224}-968 q^{223}-1372 q^{222}-1208 q^{221}-600 q^{220}+376 q^{219}+1368 q^{218}+1888 q^{217}+1728 q^{216}+795 q^{215}-660 q^{214}-1928 q^{213}-2606 q^{212}-2230 q^{211}-749 q^{210}+1155 q^{209}+2827 q^{208}+3404 q^{207}+2466 q^{206}+390 q^{205}-2139 q^{204}-3962 q^{203}-4017 q^{202}-2296 q^{201}+671 q^{200}+3609 q^{199}+4991 q^{198}+4205 q^{197}+1264 q^{196}-2523 q^{195}-5227 q^{194}-5622 q^{193}-3271 q^{192}+886 q^{191}+4755 q^{190}+6511 q^{189}+5034 q^{188}+837 q^{187}-3823 q^{186}-6776 q^{185}-6341 q^{184}-2513 q^{183}+2678 q^{182}+6695 q^{181}+7239 q^{180}+3826 q^{179}-1601 q^{178}-6322 q^{177}-7751 q^{176}-4869 q^{175}+660 q^{174}+5970 q^{173}+8056 q^{172}+5536 q^{171}+20 q^{170}-5611 q^{169}-8182 q^{168}-6019 q^{167}-501 q^{166}+5386 q^{165}+8267 q^{164}+6278 q^{163}+778 q^{162}-5220 q^{161}-8301 q^{160}-6443 q^{159}-935 q^{158}+5158 q^{157}+8338 q^{156}+6518 q^{155}+996 q^{154}-5147 q^{153}-8387 q^{152}-6583 q^{151}-1013 q^{150}+5189 q^{149}+8480 q^{148}+6681 q^{147}+1053 q^{146}-5248 q^{145}-8632 q^{144}-6873 q^{143}-1192 q^{142}+5238 q^{141}+8822 q^{140}+7228 q^{139}+1535 q^{138}-5082 q^{137}-8964 q^{136}-7681 q^{135}-2176 q^{134}+4547 q^{133}+8896 q^{132}+8241 q^{131}+3125 q^{130}-3622 q^{129}-8414 q^{128}-8553 q^{127}-4256 q^{126}+2092 q^{125}+7315 q^{124}+8534 q^{123}+5362 q^{122}-314 q^{121}-5608 q^{120}-7730 q^{119}-6024 q^{118}-1594 q^{117}+3363 q^{116}+6303 q^{115}+6008 q^{114}+3025 q^{113}-1095 q^{112}-4228 q^{111}-5122 q^{110}-3749 q^{109}-820 q^{108}+2050 q^{107}+3636 q^{106}+3518 q^{105}+1914 q^{104}-189 q^{103}-1880 q^{102}-2606 q^{101}-2136 q^{100}-900 q^{99}+395 q^{98}+1368 q^{97}+1619 q^{96}+1245 q^{95}+498 q^{94}-341 q^{93}-834 q^{92}-924 q^{91}-727 q^{90}-304 q^{89}+150 q^{88}+448 q^{87}+547 q^{86}+389 q^{85}+188 q^{84}+2 q^{83}-201 q^{82}-278 q^{81}-238 q^{80}-128 q^{79}-16 q^{78}+41 q^{77}+99 q^{76}+143 q^{75}+95 q^{74}+33 q^{73}-q^{72}-25 q^{71}-38 q^{70}-69 q^{69}-48 q^{68}-11 q^{67}+6 q^{66}+4 q^{65}+18 q^{64}+30 q^{63}+29 q^{62}+3 q^{61}-4 q^{60}-3 q^{59}-5 q^{58}-13 q^{57}-16 q^{56}-3 q^{55}+3 q^{54}+2 q^{52}+2 q^{51}+6 q^{50}+5 q^{49}-q^{48}+q^{46}-2 q^{45}+q^{44}-5 q^{43}-q^{42}+q^{38}+3 q^{36}+q^{21}</math>}}
coloured_jones_4 = <math>q^{108}-2 q^{107}-q^{106}+2 q^{105}+q^{104}+5 q^{103}-6 q^{102}-5 q^{101}+15 q^{98}-3 q^{97}-5 q^{96}-5 q^{95}-10 q^{94}+12 q^{93}+7 q^{91}+8 q^{90}-9 q^{89}-6 q^{88}-20 q^{87}-4 q^{86}+27 q^{85}+28 q^{84}+9 q^{83}-36 q^{82}-55 q^{81}+4 q^{80}+53 q^{79}+59 q^{78}+q^{77}-90 q^{76}-54 q^{75}+26 q^{74}+91 q^{73}+67 q^{72}-80 q^{71}-94 q^{70}-25 q^{69}+88 q^{68}+119 q^{67}-53 q^{66}-109 q^{65}-61 q^{64}+78 q^{63}+145 q^{62}-36 q^{61}-116 q^{60}-79 q^{59}+74 q^{58}+160 q^{57}-27 q^{56}-120 q^{55}-93 q^{54}+63 q^{53}+164 q^{52}-103 q^{50}-108 q^{49}+25 q^{48}+137 q^{47}+39 q^{46}-49 q^{45}-94 q^{44}-25 q^{43}+65 q^{42}+50 q^{41}+11 q^{40}-41 q^{39}-37 q^{38}-2 q^{37}+20 q^{36}+22 q^{35}+4 q^{34}-9 q^{33}-15 q^{32}-3 q^{31}+q^{30}+6 q^{29}+6 q^{28}-2 q^{27}+q^{26}-5 q^{25}-q^{24}+q^{23}+3 q^{21}+q^{12}</math> |

coloured_jones_5 = <math>q^{160}-2 q^{159}-q^{158}+2 q^{157}+q^{156}+2 q^{155}+q^{154}-4 q^{153}-7 q^{152}+4 q^{150}+7 q^{149}+6 q^{148}+q^{147}-8 q^{146}-13 q^{145}-3 q^{144}+3 q^{143}+6 q^{142}+11 q^{141}+9 q^{140}-2 q^{139}-4 q^{138}-8 q^{137}-20 q^{136}-14 q^{135}+2 q^{134}+22 q^{133}+38 q^{132}+33 q^{131}-6 q^{130}-50 q^{129}-70 q^{128}-43 q^{127}+30 q^{126}+92 q^{125}+102 q^{124}+32 q^{123}-75 q^{122}-145 q^{121}-114 q^{120}+8 q^{119}+141 q^{118}+187 q^{117}+93 q^{116}-83 q^{115}-220 q^{114}-199 q^{113}-16 q^{112}+195 q^{111}+280 q^{110}+141 q^{109}-129 q^{108}-321 q^{107}-252 q^{106}+33 q^{105}+317 q^{104}+352 q^{103}+64 q^{102}-296 q^{101}-407 q^{100}-158 q^{99}+257 q^{98}+455 q^{97}+224 q^{96}-229 q^{95}-473 q^{94}-274 q^{93}+200 q^{92}+496 q^{91}+301 q^{90}-191 q^{89}-503 q^{88}-321 q^{87}+184 q^{86}+517 q^{85}+333 q^{84}-182 q^{83}-525 q^{82}-352 q^{81}+170 q^{80}+535 q^{79}+378 q^{78}-144 q^{77}-531 q^{76}-408 q^{75}+90 q^{74}+499 q^{73}+443 q^{72}-11 q^{71}-440 q^{70}-447 q^{69}-81 q^{68}+324 q^{67}+426 q^{66}+171 q^{65}-194 q^{64}-354 q^{63}-216 q^{62}+53 q^{61}+244 q^{60}+224 q^{59}+48 q^{58}-124 q^{57}-174 q^{56}-99 q^{55}+24 q^{54}+100 q^{53}+95 q^{52}+33 q^{51}-30 q^{50}-62 q^{49}-41 q^{48}-13 q^{47}+18 q^{46}+27 q^{45}+22 q^{44}+3 q^{43}-5 q^{42}-11 q^{41}-12 q^{40}-5 q^{39}+2 q^{38}+2 q^{37}+5 q^{36}+5 q^{35}+q^{34}-2 q^{33}+q^{32}-5 q^{31}-q^{30}+q^{28}+3 q^{26}+q^{15}</math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{222}-2 q^{221}-q^{220}+2 q^{219}+q^{218}+2 q^{217}-2 q^{216}+3 q^{215}-6 q^{214}-7 q^{213}+3 q^{212}+3 q^{211}+8 q^{210}+q^{209}+11 q^{208}-9 q^{207}-13 q^{206}-6 q^{205}-6 q^{204}+4 q^{203}+28 q^{201}+2 q^{200}+2 q^{199}+q^{198}-11 q^{197}-12 q^{196}-27 q^{195}+3 q^{194}-13 q^{193}+12 q^{192}+33 q^{191}+36 q^{190}+35 q^{189}+2 q^{188}-25 q^{187}-81 q^{186}-76 q^{185}-41 q^{184}+8 q^{183}+97 q^{182}+143 q^{181}+117 q^{180}+18 q^{179}-90 q^{178}-176 q^{177}-234 q^{176}-106 q^{175}+70 q^{174}+216 q^{173}+297 q^{172}+243 q^{171}+61 q^{170}-268 q^{169}-378 q^{168}-375 q^{167}-189 q^{166}+161 q^{165}+484 q^{164}+600 q^{163}+289 q^{162}-42 q^{161}-527 q^{160}-767 q^{159}-583 q^{158}-5 q^{157}+638 q^{156}+869 q^{155}+835 q^{154}+110 q^{153}-708 q^{152}-1196 q^{151}-924 q^{150}-100 q^{149}+766 q^{148}+1458 q^{147}+1060 q^{146}+33 q^{145}-1141 q^{144}-1536 q^{143}-1035 q^{142}+126 q^{141}+1487 q^{140}+1692 q^{139}+860 q^{138}-682 q^{137}-1666 q^{136}-1663 q^{135}-508 q^{134}+1233 q^{133}+1931 q^{132}+1391 q^{131}-269 q^{130}-1599 q^{129}-1955 q^{128}-872 q^{127}+1029 q^{126}+1990 q^{125}+1630 q^{124}-64 q^{123}-1546 q^{122}-2072 q^{121}-1005 q^{120}+958 q^{119}+2018 q^{118}+1718 q^{117}-9 q^{116}-1553 q^{115}-2144 q^{114}-1055 q^{113}+948 q^{112}+2078 q^{111}+1811 q^{110}+52 q^{109}-1569 q^{108}-2259 q^{107}-1199 q^{106}+825 q^{105}+2112 q^{104}+2011 q^{103}+335 q^{102}-1382 q^{101}-2320 q^{100}-1521 q^{99}+340 q^{98}+1823 q^{97}+2135 q^{96}+894 q^{95}-714 q^{94}-1948 q^{93}-1739 q^{92}-466 q^{91}+958 q^{90}+1729 q^{89}+1287 q^{88}+241 q^{87}-962 q^{86}-1344 q^{85}-971 q^{84}-83 q^{83}+739 q^{82}+973 q^{81}+716 q^{80}+40 q^{79}-441 q^{78}-684 q^{77}-486 q^{76}-93 q^{75}+238 q^{74}+408 q^{73}+315 q^{72}+156 q^{71}-104 q^{70}-202 q^{69}-204 q^{68}-124 q^{67}-17 q^{66}+72 q^{65}+134 q^{64}+80 q^{63}+48 q^{62}-3 q^{61}-42 q^{60}-68 q^{59}-46 q^{58}-8 q^{57}-2 q^{56}+21 q^{55}+32 q^{54}+23 q^{53}+3 q^{52}-3 q^{51}-5 q^{50}-14 q^{49}-13 q^{48}-2 q^{47}+2 q^{45}+2 q^{44}+6 q^{43}+4 q^{42}+q^{40}-2 q^{39}+q^{38}-5 q^{37}-q^{36}+q^{33}+3 q^{31}+q^{18}</math> |

coloured_jones_7 = <math>q^{294}-2 q^{293}-q^{292}+2 q^{291}+q^{290}+2 q^{289}-2 q^{288}+q^{286}-6 q^{285}-4 q^{284}+2 q^{283}+3 q^{282}+10 q^{281}+3 q^{280}-q^{279}+4 q^{278}-11 q^{277}-10 q^{276}-9 q^{275}-8 q^{274}+12 q^{273}+12 q^{272}+7 q^{271}+17 q^{270}+2 q^{269}+2 q^{268}-5 q^{267}-31 q^{266}-11 q^{265}-9 q^{264}-12 q^{263}+3 q^{262}+4 q^{261}+29 q^{260}+48 q^{259}+20 q^{258}+19 q^{257}+5 q^{256}-34 q^{255}-56 q^{254}-95 q^{253}-75 q^{252}-7 q^{251}+38 q^{250}+98 q^{249}+155 q^{248}+145 q^{247}+92 q^{246}-40 q^{245}-179 q^{244}-238 q^{243}-255 q^{242}-176 q^{241}+6 q^{240}+209 q^{239}+381 q^{238}+435 q^{237}+292 q^{236}+64 q^{235}-244 q^{234}-537 q^{233}-630 q^{232}-532 q^{231}-194 q^{230}+299 q^{229}+707 q^{228}+929 q^{227}+841 q^{226}+355 q^{225}-289 q^{224}-968 q^{223}-1372 q^{222}-1208 q^{221}-600 q^{220}+376 q^{219}+1368 q^{218}+1888 q^{217}+1728 q^{216}+795 q^{215}-660 q^{214}-1928 q^{213}-2606 q^{212}-2230 q^{211}-749 q^{210}+1155 q^{209}+2827 q^{208}+3404 q^{207}+2466 q^{206}+390 q^{205}-2139 q^{204}-3962 q^{203}-4017 q^{202}-2296 q^{201}+671 q^{200}+3609 q^{199}+4991 q^{198}+4205 q^{197}+1264 q^{196}-2523 q^{195}-5227 q^{194}-5622 q^{193}-3271 q^{192}+886 q^{191}+4755 q^{190}+6511 q^{189}+5034 q^{188}+837 q^{187}-3823 q^{186}-6776 q^{185}-6341 q^{184}-2513 q^{183}+2678 q^{182}+6695 q^{181}+7239 q^{180}+3826 q^{179}-1601 q^{178}-6322 q^{177}-7751 q^{176}-4869 q^{175}+660 q^{174}+5970 q^{173}+8056 q^{172}+5536 q^{171}+20 q^{170}-5611 q^{169}-8182 q^{168}-6019 q^{167}-501 q^{166}+5386 q^{165}+8267 q^{164}+6278 q^{163}+778 q^{162}-5220 q^{161}-8301 q^{160}-6443 q^{159}-935 q^{158}+5158 q^{157}+8338 q^{156}+6518 q^{155}+996 q^{154}-5147 q^{153}-8387 q^{152}-6583 q^{151}-1013 q^{150}+5189 q^{149}+8480 q^{148}+6681 q^{147}+1053 q^{146}-5248 q^{145}-8632 q^{144}-6873 q^{143}-1192 q^{142}+5238 q^{141}+8822 q^{140}+7228 q^{139}+1535 q^{138}-5082 q^{137}-8964 q^{136}-7681 q^{135}-2176 q^{134}+4547 q^{133}+8896 q^{132}+8241 q^{131}+3125 q^{130}-3622 q^{129}-8414 q^{128}-8553 q^{127}-4256 q^{126}+2092 q^{125}+7315 q^{124}+8534 q^{123}+5362 q^{122}-314 q^{121}-5608 q^{120}-7730 q^{119}-6024 q^{118}-1594 q^{117}+3363 q^{116}+6303 q^{115}+6008 q^{114}+3025 q^{113}-1095 q^{112}-4228 q^{111}-5122 q^{110}-3749 q^{109}-820 q^{108}+2050 q^{107}+3636 q^{106}+3518 q^{105}+1914 q^{104}-189 q^{103}-1880 q^{102}-2606 q^{101}-2136 q^{100}-900 q^{99}+395 q^{98}+1368 q^{97}+1619 q^{96}+1245 q^{95}+498 q^{94}-341 q^{93}-834 q^{92}-924 q^{91}-727 q^{90}-304 q^{89}+150 q^{88}+448 q^{87}+547 q^{86}+389 q^{85}+188 q^{84}+2 q^{83}-201 q^{82}-278 q^{81}-238 q^{80}-128 q^{79}-16 q^{78}+41 q^{77}+99 q^{76}+143 q^{75}+95 q^{74}+33 q^{73}-q^{72}-25 q^{71}-38 q^{70}-69 q^{69}-48 q^{68}-11 q^{67}+6 q^{66}+4 q^{65}+18 q^{64}+30 q^{63}+29 q^{62}+3 q^{61}-4 q^{60}-3 q^{59}-5 q^{58}-13 q^{57}-16 q^{56}-3 q^{55}+3 q^{54}+2 q^{52}+2 q^{51}+6 q^{50}+5 q^{49}-q^{48}+q^{46}-2 q^{45}+q^{44}-5 q^{43}-q^{42}+q^{38}+3 q^{36}+q^{21}</math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 154]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[9, 17, 10, 16],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 154]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[9, 17, 10, 16],
X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14],
X[17, 1, 18, 20], X[13, 19, 14, 18], X[19, 15, 20, 14],
X[15, 11, 16, 10], X[6, 12, 7, 11], X[2, 8, 3, 7]]</nowiki></pre></td></tr>
X[15, 11, 16, 10], X[6, 12, 7, 11], X[2, 8, 3, 7]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 154]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 154]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5,
6, -7, 5]</nowiki></pre></td></tr>
6, -7, 5]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 154]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 8, 12, 2, -16, 6, -18, -10, -20, -14]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 154]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 154]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {1, 1, 2, -1, 2, 1, 3, 2, 2, 2, 3}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, -16, 6, -18, -10, -20, -14]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 154]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 154]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {1, 1, 2, -1, 2, 1, 3, 2, 2, 2, 3}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 154]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_154_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 154]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 154]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 4 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 154]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 154]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_154_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 154]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 154]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 3
7 + t - - - 4 t + t
7 + t - - - 4 t + t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 154]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 154]][z]</nowiki></code></td></tr>
1 + 5 z + 6 z + z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 154]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 5 z + 6 z + z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 154]], KnotSignature[Knot[10, 154]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{13, 4}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 154]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 6 7 8 9 10 11 12
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
q + 2 q - 2 q + 2 q - 3 q + 2 q - 2 q + q</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 154]}</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 154]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 154]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 154]], KnotSignature[Knot[10, 154]]}</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 12 14 16 18 22 24 26 28 30
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{13, 4}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 154]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 6 7 8 9 10 11 12
q + 2 q - 2 q + 2 q - 3 q + 2 q - 2 q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 154]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 154]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 10 12 14 16 18 22 24 26 28 30
q + q + q + 2 q + 2 q + q - q - q - 2 q - 2 q -
q + q + q + 2 q + 2 q + q - q - q - 2 q - 2 q -
34 36 38
34 36 38
q + q + q</nowiki></pre></td></tr>
q + q + q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 154]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 154]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 6
-12 2 2 4 2 z 2 z 9 z 6 z z
-12 2 2 4 2 z 2 z 9 z 6 z z
a - --- - -- + -- - ---- - ---- + ---- + ---- + --
a - --- - -- + -- - ---- - ---- + ---- + ---- + --
10 8 6 10 8 6 6 6
10 8 6 10 8 6 6 6
a a a a a a a a</nowiki></pre></td></tr>
a a a a a a a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 154]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 154]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2
-12 2 2 4 4 z 10 z 3 z 3 z 3 z 2 z 5 z
-12 2 2 4 4 z 10 z 3 z 3 z 3 z 2 z 5 z
a + --- - -- - -- - --- - ---- - --- + --- + ---- + ---- - ---- +
a + --- - -- - -- - --- - ---- - --- + --- + ---- + ---- - ---- +
Line 172: Line 214:
---- + -- + --- + ---
---- + -- + --- + ---
11 9 12 10
11 9 12 10
a a a a</nowiki></pre></td></tr>
a a a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 154]], Vassiliev[3][Knot[10, 154]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 9}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 154]], Vassiliev[3][Knot[10, 154]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 154]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 9 2 9 3 13 3 11 4 13 4 13 5
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 9}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 154]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 7 9 2 9 3 13 3 11 4 13 4 13 5
q + q + q t + q t + q t + 2 q t + 2 q t + q t +
q + q + q t + q t + q t + 2 q t + 2 q t + q t +
Line 185: Line 235:
21 8 21 9 23 9 25 10
21 8 21 9 23 9 25 10
q t + q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 154], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 11 12 13 14 16 17 18 19
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 154], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 11 12 13 14 16 17 18 19
q + 3 q - q - 4 q + 6 q - 8 q + 5 q + 3 q - 8 q +
q + 3 q - q - 4 q + 6 q - 8 q + 5 q + 3 q - 8 q +
Line 195: Line 249:
30 31 32 33 34
30 31 32 33 34
3 q + 5 q - q - 2 q + q</nowiki></pre></td></tr>
3 q + 5 q - q - 2 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 16:58, 1 September 2005

10 153.gif

10_153

10 155.gif

10_155

10 154.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 154's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 154 at Knotilus!


Knot presentations

Planar diagram presentation X4251 X8493 X12,6,13,5 X9,17,10,16 X17,1,18,20 X13,19,14,18 X19,15,20,14 X15,11,16,10 X6,12,7,11 X2837
Gauss code 1, -10, 2, -1, 3, -9, 10, -2, -4, 8, 9, -3, -6, 7, -8, 4, -5, 6, -7, 5
Dowker-Thistlethwaite code 4 8 12 2 -16 6 -18 -10 -20 -14
Conway Notation [(21,2)-(21,2)]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 11, width is 4,

Braid index is 4

10 154 ML.gif 10 154 AP.gif
[{3, 10}, {2, 4}, {1, 3}, {11, 9}, {10, 2}, {5, 8}, {9, 7}, {8, 6}, {7, 12}, {4, 11}, {12, 5}, {6, 1}]

[edit Notes on presentations of 10 154]

Knot 10_154.
A graph, knot 10_154.
A part of a knot and a part of a graph.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [5][-15]
Hyperbolic Volume 9.24989
A-Polynomial See Data:10 154/A-polynomial

[edit Notes for 10 154's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -6

[edit Notes for 10 154's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 13, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (5, 9)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of 10 154. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
012345678910χ
25          11
23         1 -1
21        11 0
19       21  -1
17     111   -1
15     22    0
13   121     0
11    2      2
9  11       0
71          1
51          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials