10 161: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 161 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,6,-5,-3,8,4,-7,-10,2,-8,3,9,-6,7,-4,5,-9/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=161|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,6,-5,-3,8,4,-7,-10,2,-8,3,9,-6,7,-4,5,-9/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<td width=14.2857%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>&chi;</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=red>1</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=red>1</td><td>1</td></tr>
Line 69: Line 37:
<tr align=center><td>-21</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-21</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math> q^{-6} + q^{-11} - q^{-13} + q^{-14} + q^{-15} -2 q^{-16} +2 q^{-18} -2 q^{-19} + q^{-21} - q^{-22} - q^{-23} + q^{-24} + q^{-25} -2 q^{-26} +2 q^{-28} - q^{-29} - q^{-30} + q^{-31} </math> |

coloured_jones_3 = <math> q^{-9} + q^{-16} + q^{-18} -2 q^{-19} +3 q^{-22} -4 q^{-24} -2 q^{-25} +4 q^{-26} +4 q^{-27} -3 q^{-28} -6 q^{-29} +3 q^{-30} +6 q^{-31} -2 q^{-32} -7 q^{-33} +2 q^{-34} +6 q^{-35} -2 q^{-36} -7 q^{-37} +2 q^{-38} +6 q^{-39} -2 q^{-40} -5 q^{-41} +2 q^{-42} +4 q^{-43} - q^{-44} -2 q^{-45} + q^{-47} + q^{-49} -2 q^{-51} - q^{-52} +2 q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-58} + q^{-59} - q^{-60} </math> |
{{Display Coloured Jones|J2=<math> q^{-6} + q^{-11} - q^{-13} + q^{-14} + q^{-15} -2 q^{-16} +2 q^{-18} -2 q^{-19} + q^{-21} - q^{-22} - q^{-23} + q^{-24} + q^{-25} -2 q^{-26} +2 q^{-28} - q^{-29} - q^{-30} + q^{-31} </math>|J3=<math> q^{-9} + q^{-16} + q^{-18} -2 q^{-19} +3 q^{-22} -4 q^{-24} -2 q^{-25} +4 q^{-26} +4 q^{-27} -3 q^{-28} -6 q^{-29} +3 q^{-30} +6 q^{-31} -2 q^{-32} -7 q^{-33} +2 q^{-34} +6 q^{-35} -2 q^{-36} -7 q^{-37} +2 q^{-38} +6 q^{-39} -2 q^{-40} -5 q^{-41} +2 q^{-42} +4 q^{-43} - q^{-44} -2 q^{-45} + q^{-47} + q^{-49} -2 q^{-51} - q^{-52} +2 q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-58} + q^{-59} - q^{-60} </math>|J4=<math> q^{-12} + q^{-21} + q^{-23} -2 q^{-25} - q^{-27} +2 q^{-28} +2 q^{-29} - q^{-30} -3 q^{-32} + q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} + q^{-38} -4 q^{-39} -7 q^{-40} +9 q^{-42} +8 q^{-43} -3 q^{-44} -15 q^{-45} -8 q^{-46} +13 q^{-47} +14 q^{-48} -18 q^{-50} -12 q^{-51} +14 q^{-52} +15 q^{-53} +2 q^{-54} -18 q^{-55} -13 q^{-56} +14 q^{-57} +15 q^{-58} + q^{-59} -17 q^{-60} -12 q^{-61} +13 q^{-62} +15 q^{-63} + q^{-64} -15 q^{-65} -12 q^{-66} +10 q^{-67} +13 q^{-68} +4 q^{-69} -11 q^{-70} -12 q^{-71} +4 q^{-72} +10 q^{-73} +7 q^{-74} -5 q^{-75} -9 q^{-76} - q^{-77} +3 q^{-78} +4 q^{-79} + q^{-80} -2 q^{-81} - q^{-82} -2 q^{-84} + q^{-86} +2 q^{-87} +3 q^{-88} -3 q^{-89} -2 q^{-90} - q^{-91} +3 q^{-93} - q^{-96} - q^{-97} + q^{-98} </math>|J5=<math> q^{-15} + q^{-26} + q^{-28} -2 q^{-31} - q^{-33} + q^{-34} + q^{-35} + q^{-36} - q^{-40} - q^{-41} - q^{-42} -2 q^{-43} +5 q^{-45} +5 q^{-46} + q^{-47} -2 q^{-48} -8 q^{-49} -7 q^{-50} +7 q^{-52} +8 q^{-53} +6 q^{-54} -2 q^{-55} -8 q^{-56} -10 q^{-57} -6 q^{-58} +3 q^{-59} +11 q^{-60} +11 q^{-61} +6 q^{-62} -7 q^{-63} -18 q^{-64} -14 q^{-65} +4 q^{-66} +18 q^{-67} +20 q^{-68} +4 q^{-69} -21 q^{-70} -25 q^{-71} -5 q^{-72} +20 q^{-73} +26 q^{-74} +7 q^{-75} -19 q^{-76} -27 q^{-77} -8 q^{-78} +20 q^{-79} +26 q^{-80} +7 q^{-81} -18 q^{-82} -26 q^{-83} -8 q^{-84} +20 q^{-85} +26 q^{-86} +7 q^{-87} -18 q^{-88} -25 q^{-89} -8 q^{-90} +18 q^{-91} +24 q^{-92} +8 q^{-93} -15 q^{-94} -23 q^{-95} -10 q^{-96} +11 q^{-97} +22 q^{-98} +13 q^{-99} -7 q^{-100} -20 q^{-101} -16 q^{-102} + q^{-103} +16 q^{-104} +19 q^{-105} +5 q^{-106} -11 q^{-107} -19 q^{-108} -12 q^{-109} +6 q^{-110} +16 q^{-111} +15 q^{-112} +2 q^{-113} -12 q^{-114} -14 q^{-115} -7 q^{-116} +5 q^{-117} +10 q^{-118} +7 q^{-119} + q^{-120} -3 q^{-121} -6 q^{-122} -3 q^{-123} + q^{-124} + q^{-126} +2 q^{-127} +2 q^{-128} + q^{-129} + q^{-130} -2 q^{-131} -4 q^{-132} -2 q^{-133} + q^{-134} +2 q^{-135} +2 q^{-136} +2 q^{-137} - q^{-138} -2 q^{-139} - q^{-140} + q^{-143} + q^{-144} - q^{-145} </math>|J6=<math> q^{-18} + q^{-31} + q^{-33} -2 q^{-37} - q^{-39} + q^{-40} +2 q^{-43} +2 q^{-47} -2 q^{-48} -3 q^{-49} -2 q^{-51} - q^{-52} + q^{-53} +7 q^{-54} +3 q^{-55} - q^{-56} +2 q^{-57} -4 q^{-58} -6 q^{-59} -5 q^{-60} +2 q^{-61} -2 q^{-63} +8 q^{-64} +5 q^{-65} +6 q^{-66} + q^{-68} -10 q^{-69} -19 q^{-70} -8 q^{-71} -2 q^{-72} +17 q^{-73} +18 q^{-74} +25 q^{-75} +5 q^{-76} -19 q^{-77} -29 q^{-78} -33 q^{-79} -5 q^{-80} +10 q^{-81} +43 q^{-82} +39 q^{-83} +15 q^{-84} -21 q^{-85} -50 q^{-86} -38 q^{-87} -24 q^{-88} +31 q^{-89} +57 q^{-90} +51 q^{-91} +4 q^{-92} -44 q^{-93} -53 q^{-94} -51 q^{-95} +11 q^{-96} +57 q^{-97} +67 q^{-98} +18 q^{-99} -35 q^{-100} -53 q^{-101} -60 q^{-102} +2 q^{-103} +55 q^{-104} +70 q^{-105} +19 q^{-106} -33 q^{-107} -50 q^{-108} -60 q^{-109} +55 q^{-111} +70 q^{-112} +19 q^{-113} -34 q^{-114} -51 q^{-115} -59 q^{-116} + q^{-117} +55 q^{-118} +69 q^{-119} +18 q^{-120} -33 q^{-121} -51 q^{-122} -56 q^{-123} + q^{-124} +52 q^{-125} +64 q^{-126} +17 q^{-127} -28 q^{-128} -45 q^{-129} -52 q^{-130} -4 q^{-131} +40 q^{-132} +56 q^{-133} +21 q^{-134} -14 q^{-135} -30 q^{-136} -48 q^{-137} -18 q^{-138} +19 q^{-139} +41 q^{-140} +27 q^{-141} +10 q^{-142} -7 q^{-143} -36 q^{-144} -32 q^{-145} -8 q^{-146} +15 q^{-147} +19 q^{-148} +27 q^{-149} +21 q^{-150} -8 q^{-151} -24 q^{-152} -24 q^{-153} -16 q^{-154} -6 q^{-155} +17 q^{-156} +30 q^{-157} +19 q^{-158} +3 q^{-159} -9 q^{-160} -22 q^{-161} -23 q^{-162} -8 q^{-163} +9 q^{-164} +16 q^{-165} +15 q^{-166} +10 q^{-167} -2 q^{-168} -9 q^{-169} -11 q^{-170} -7 q^{-171} -2 q^{-172} +3 q^{-173} +4 q^{-174} +4 q^{-175} +4 q^{-176} + q^{-177} - q^{-179} -5 q^{-181} -3 q^{-182} - q^{-183} +2 q^{-185} +3 q^{-186} +5 q^{-187} - q^{-188} - q^{-189} -2 q^{-190} -2 q^{-191} -2 q^{-192} +3 q^{-194} + q^{-196} - q^{-199} - q^{-200} + q^{-201} </math>|J7=<math> q^{-21} + q^{-36} + q^{-38} -2 q^{-43} - q^{-45} + q^{-46} - q^{-48} + q^{-49} +2 q^{-50} +2 q^{-54} + q^{-55} -4 q^{-56} -2 q^{-57} - q^{-59} -2 q^{-60} - q^{-61} +4 q^{-62} +5 q^{-63} + q^{-64} +2 q^{-66} + q^{-67} -3 q^{-68} -6 q^{-69} - q^{-70} -3 q^{-71} -3 q^{-72} -4 q^{-73} +2 q^{-74} +9 q^{-75} +7 q^{-76} +6 q^{-77} +8 q^{-78} + q^{-79} -7 q^{-80} -16 q^{-81} -17 q^{-82} -5 q^{-83} -5 q^{-84} +4 q^{-85} +19 q^{-86} +18 q^{-87} +17 q^{-88} +6 q^{-89} -4 q^{-90} -8 q^{-91} -23 q^{-92} -28 q^{-93} -16 q^{-94} -11 q^{-95} +10 q^{-96} +28 q^{-97} +36 q^{-98} +45 q^{-99} +18 q^{-100} -13 q^{-101} -39 q^{-102} -66 q^{-103} -61 q^{-104} -23 q^{-105} +23 q^{-106} +78 q^{-107} +92 q^{-108} +66 q^{-109} +16 q^{-110} -68 q^{-111} -114 q^{-112} -109 q^{-113} -56 q^{-114} +43 q^{-115} +119 q^{-116} +137 q^{-117} +96 q^{-118} -10 q^{-119} -114 q^{-120} -157 q^{-121} -126 q^{-122} -11 q^{-123} +104 q^{-124} +160 q^{-125} +143 q^{-126} +33 q^{-127} -95 q^{-128} -165 q^{-129} -149 q^{-130} -39 q^{-131} +89 q^{-132} +161 q^{-133} +152 q^{-134} +45 q^{-135} -88 q^{-136} -161 q^{-137} -150 q^{-138} -44 q^{-139} +85 q^{-140} +160 q^{-141} +151 q^{-142} +45 q^{-143} -88 q^{-144} -160 q^{-145} -149 q^{-146} -44 q^{-147} +85 q^{-148} +160 q^{-149} +151 q^{-150} +45 q^{-151} -88 q^{-152} -160 q^{-153} -149 q^{-154} -43 q^{-155} +85 q^{-156} +159 q^{-157} +149 q^{-158} +43 q^{-159} -86 q^{-160} -158 q^{-161} -146 q^{-162} -42 q^{-163} +82 q^{-164} +153 q^{-165} +142 q^{-166} +45 q^{-167} -76 q^{-168} -146 q^{-169} -138 q^{-170} -49 q^{-171} +65 q^{-172} +134 q^{-173} +134 q^{-174} +57 q^{-175} -47 q^{-176} -119 q^{-177} -128 q^{-178} -69 q^{-179} +24 q^{-180} +99 q^{-181} +119 q^{-182} +81 q^{-183} +2 q^{-184} -71 q^{-185} -104 q^{-186} -89 q^{-187} -28 q^{-188} +37 q^{-189} +80 q^{-190} +87 q^{-191} +53 q^{-192} -4 q^{-193} -47 q^{-194} -72 q^{-195} -62 q^{-196} -27 q^{-197} +8 q^{-198} +46 q^{-199} +56 q^{-200} +44 q^{-201} +23 q^{-202} -11 q^{-203} -33 q^{-204} -40 q^{-205} -43 q^{-206} -23 q^{-207} +4 q^{-208} +23 q^{-209} +41 q^{-210} +34 q^{-211} +25 q^{-212} +7 q^{-213} -23 q^{-214} -35 q^{-215} -34 q^{-216} -23 q^{-217} -3 q^{-218} +14 q^{-219} +27 q^{-220} +34 q^{-221} +16 q^{-222} + q^{-223} -9 q^{-224} -19 q^{-225} -19 q^{-226} -15 q^{-227} -4 q^{-228} +8 q^{-229} +9 q^{-230} +8 q^{-231} +10 q^{-232} +4 q^{-233} + q^{-234} -3 q^{-235} -5 q^{-236} -3 q^{-237} -3 q^{-238} -5 q^{-239} -2 q^{-240} + q^{-242} +5 q^{-243} +3 q^{-244} +3 q^{-245} +3 q^{-246} -2 q^{-248} -4 q^{-249} -5 q^{-250} +3 q^{-254} +2 q^{-255} +2 q^{-256} -2 q^{-258} - q^{-259} - q^{-261} + q^{-264} + q^{-265} - q^{-266} </math>}}
coloured_jones_4 = <math> q^{-12} + q^{-21} + q^{-23} -2 q^{-25} - q^{-27} +2 q^{-28} +2 q^{-29} - q^{-30} -3 q^{-32} + q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} + q^{-38} -4 q^{-39} -7 q^{-40} +9 q^{-42} +8 q^{-43} -3 q^{-44} -15 q^{-45} -8 q^{-46} +13 q^{-47} +14 q^{-48} -18 q^{-50} -12 q^{-51} +14 q^{-52} +15 q^{-53} +2 q^{-54} -18 q^{-55} -13 q^{-56} +14 q^{-57} +15 q^{-58} + q^{-59} -17 q^{-60} -12 q^{-61} +13 q^{-62} +15 q^{-63} + q^{-64} -15 q^{-65} -12 q^{-66} +10 q^{-67} +13 q^{-68} +4 q^{-69} -11 q^{-70} -12 q^{-71} +4 q^{-72} +10 q^{-73} +7 q^{-74} -5 q^{-75} -9 q^{-76} - q^{-77} +3 q^{-78} +4 q^{-79} + q^{-80} -2 q^{-81} - q^{-82} -2 q^{-84} + q^{-86} +2 q^{-87} +3 q^{-88} -3 q^{-89} -2 q^{-90} - q^{-91} +3 q^{-93} - q^{-96} - q^{-97} + q^{-98} </math> |

coloured_jones_5 = <math> q^{-15} + q^{-26} + q^{-28} -2 q^{-31} - q^{-33} + q^{-34} + q^{-35} + q^{-36} - q^{-40} - q^{-41} - q^{-42} -2 q^{-43} +5 q^{-45} +5 q^{-46} + q^{-47} -2 q^{-48} -8 q^{-49} -7 q^{-50} +7 q^{-52} +8 q^{-53} +6 q^{-54} -2 q^{-55} -8 q^{-56} -10 q^{-57} -6 q^{-58} +3 q^{-59} +11 q^{-60} +11 q^{-61} +6 q^{-62} -7 q^{-63} -18 q^{-64} -14 q^{-65} +4 q^{-66} +18 q^{-67} +20 q^{-68} +4 q^{-69} -21 q^{-70} -25 q^{-71} -5 q^{-72} +20 q^{-73} +26 q^{-74} +7 q^{-75} -19 q^{-76} -27 q^{-77} -8 q^{-78} +20 q^{-79} +26 q^{-80} +7 q^{-81} -18 q^{-82} -26 q^{-83} -8 q^{-84} +20 q^{-85} +26 q^{-86} +7 q^{-87} -18 q^{-88} -25 q^{-89} -8 q^{-90} +18 q^{-91} +24 q^{-92} +8 q^{-93} -15 q^{-94} -23 q^{-95} -10 q^{-96} +11 q^{-97} +22 q^{-98} +13 q^{-99} -7 q^{-100} -20 q^{-101} -16 q^{-102} + q^{-103} +16 q^{-104} +19 q^{-105} +5 q^{-106} -11 q^{-107} -19 q^{-108} -12 q^{-109} +6 q^{-110} +16 q^{-111} +15 q^{-112} +2 q^{-113} -12 q^{-114} -14 q^{-115} -7 q^{-116} +5 q^{-117} +10 q^{-118} +7 q^{-119} + q^{-120} -3 q^{-121} -6 q^{-122} -3 q^{-123} + q^{-124} + q^{-126} +2 q^{-127} +2 q^{-128} + q^{-129} + q^{-130} -2 q^{-131} -4 q^{-132} -2 q^{-133} + q^{-134} +2 q^{-135} +2 q^{-136} +2 q^{-137} - q^{-138} -2 q^{-139} - q^{-140} + q^{-143} + q^{-144} - q^{-145} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math> q^{-18} + q^{-31} + q^{-33} -2 q^{-37} - q^{-39} + q^{-40} +2 q^{-43} +2 q^{-47} -2 q^{-48} -3 q^{-49} -2 q^{-51} - q^{-52} + q^{-53} +7 q^{-54} +3 q^{-55} - q^{-56} +2 q^{-57} -4 q^{-58} -6 q^{-59} -5 q^{-60} +2 q^{-61} -2 q^{-63} +8 q^{-64} +5 q^{-65} +6 q^{-66} + q^{-68} -10 q^{-69} -19 q^{-70} -8 q^{-71} -2 q^{-72} +17 q^{-73} +18 q^{-74} +25 q^{-75} +5 q^{-76} -19 q^{-77} -29 q^{-78} -33 q^{-79} -5 q^{-80} +10 q^{-81} +43 q^{-82} +39 q^{-83} +15 q^{-84} -21 q^{-85} -50 q^{-86} -38 q^{-87} -24 q^{-88} +31 q^{-89} +57 q^{-90} +51 q^{-91} +4 q^{-92} -44 q^{-93} -53 q^{-94} -51 q^{-95} +11 q^{-96} +57 q^{-97} +67 q^{-98} +18 q^{-99} -35 q^{-100} -53 q^{-101} -60 q^{-102} +2 q^{-103} +55 q^{-104} +70 q^{-105} +19 q^{-106} -33 q^{-107} -50 q^{-108} -60 q^{-109} +55 q^{-111} +70 q^{-112} +19 q^{-113} -34 q^{-114} -51 q^{-115} -59 q^{-116} + q^{-117} +55 q^{-118} +69 q^{-119} +18 q^{-120} -33 q^{-121} -51 q^{-122} -56 q^{-123} + q^{-124} +52 q^{-125} +64 q^{-126} +17 q^{-127} -28 q^{-128} -45 q^{-129} -52 q^{-130} -4 q^{-131} +40 q^{-132} +56 q^{-133} +21 q^{-134} -14 q^{-135} -30 q^{-136} -48 q^{-137} -18 q^{-138} +19 q^{-139} +41 q^{-140} +27 q^{-141} +10 q^{-142} -7 q^{-143} -36 q^{-144} -32 q^{-145} -8 q^{-146} +15 q^{-147} +19 q^{-148} +27 q^{-149} +21 q^{-150} -8 q^{-151} -24 q^{-152} -24 q^{-153} -16 q^{-154} -6 q^{-155} +17 q^{-156} +30 q^{-157} +19 q^{-158} +3 q^{-159} -9 q^{-160} -22 q^{-161} -23 q^{-162} -8 q^{-163} +9 q^{-164} +16 q^{-165} +15 q^{-166} +10 q^{-167} -2 q^{-168} -9 q^{-169} -11 q^{-170} -7 q^{-171} -2 q^{-172} +3 q^{-173} +4 q^{-174} +4 q^{-175} +4 q^{-176} + q^{-177} - q^{-179} -5 q^{-181} -3 q^{-182} - q^{-183} +2 q^{-185} +3 q^{-186} +5 q^{-187} - q^{-188} - q^{-189} -2 q^{-190} -2 q^{-191} -2 q^{-192} +3 q^{-194} + q^{-196} - q^{-199} - q^{-200} + q^{-201} </math> |

coloured_jones_7 = <math> q^{-21} + q^{-36} + q^{-38} -2 q^{-43} - q^{-45} + q^{-46} - q^{-48} + q^{-49} +2 q^{-50} +2 q^{-54} + q^{-55} -4 q^{-56} -2 q^{-57} - q^{-59} -2 q^{-60} - q^{-61} +4 q^{-62} +5 q^{-63} + q^{-64} +2 q^{-66} + q^{-67} -3 q^{-68} -6 q^{-69} - q^{-70} -3 q^{-71} -3 q^{-72} -4 q^{-73} +2 q^{-74} +9 q^{-75} +7 q^{-76} +6 q^{-77} +8 q^{-78} + q^{-79} -7 q^{-80} -16 q^{-81} -17 q^{-82} -5 q^{-83} -5 q^{-84} +4 q^{-85} +19 q^{-86} +18 q^{-87} +17 q^{-88} +6 q^{-89} -4 q^{-90} -8 q^{-91} -23 q^{-92} -28 q^{-93} -16 q^{-94} -11 q^{-95} +10 q^{-96} +28 q^{-97} +36 q^{-98} +45 q^{-99} +18 q^{-100} -13 q^{-101} -39 q^{-102} -66 q^{-103} -61 q^{-104} -23 q^{-105} +23 q^{-106} +78 q^{-107} +92 q^{-108} +66 q^{-109} +16 q^{-110} -68 q^{-111} -114 q^{-112} -109 q^{-113} -56 q^{-114} +43 q^{-115} +119 q^{-116} +137 q^{-117} +96 q^{-118} -10 q^{-119} -114 q^{-120} -157 q^{-121} -126 q^{-122} -11 q^{-123} +104 q^{-124} +160 q^{-125} +143 q^{-126} +33 q^{-127} -95 q^{-128} -165 q^{-129} -149 q^{-130} -39 q^{-131} +89 q^{-132} +161 q^{-133} +152 q^{-134} +45 q^{-135} -88 q^{-136} -161 q^{-137} -150 q^{-138} -44 q^{-139} +85 q^{-140} +160 q^{-141} +151 q^{-142} +45 q^{-143} -88 q^{-144} -160 q^{-145} -149 q^{-146} -44 q^{-147} +85 q^{-148} +160 q^{-149} +151 q^{-150} +45 q^{-151} -88 q^{-152} -160 q^{-153} -149 q^{-154} -43 q^{-155} +85 q^{-156} +159 q^{-157} +149 q^{-158} +43 q^{-159} -86 q^{-160} -158 q^{-161} -146 q^{-162} -42 q^{-163} +82 q^{-164} +153 q^{-165} +142 q^{-166} +45 q^{-167} -76 q^{-168} -146 q^{-169} -138 q^{-170} -49 q^{-171} +65 q^{-172} +134 q^{-173} +134 q^{-174} +57 q^{-175} -47 q^{-176} -119 q^{-177} -128 q^{-178} -69 q^{-179} +24 q^{-180} +99 q^{-181} +119 q^{-182} +81 q^{-183} +2 q^{-184} -71 q^{-185} -104 q^{-186} -89 q^{-187} -28 q^{-188} +37 q^{-189} +80 q^{-190} +87 q^{-191} +53 q^{-192} -4 q^{-193} -47 q^{-194} -72 q^{-195} -62 q^{-196} -27 q^{-197} +8 q^{-198} +46 q^{-199} +56 q^{-200} +44 q^{-201} +23 q^{-202} -11 q^{-203} -33 q^{-204} -40 q^{-205} -43 q^{-206} -23 q^{-207} +4 q^{-208} +23 q^{-209} +41 q^{-210} +34 q^{-211} +25 q^{-212} +7 q^{-213} -23 q^{-214} -35 q^{-215} -34 q^{-216} -23 q^{-217} -3 q^{-218} +14 q^{-219} +27 q^{-220} +34 q^{-221} +16 q^{-222} + q^{-223} -9 q^{-224} -19 q^{-225} -19 q^{-226} -15 q^{-227} -4 q^{-228} +8 q^{-229} +9 q^{-230} +8 q^{-231} +10 q^{-232} +4 q^{-233} + q^{-234} -3 q^{-235} -5 q^{-236} -3 q^{-237} -3 q^{-238} -5 q^{-239} -2 q^{-240} + q^{-242} +5 q^{-243} +3 q^{-244} +3 q^{-245} +3 q^{-246} -2 q^{-248} -4 q^{-249} -5 q^{-250} +3 q^{-254} +2 q^{-255} +2 q^{-256} -2 q^{-258} - q^{-259} - q^{-261} + q^{-264} + q^{-265} - q^{-266} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 161]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[7, 14, 8, 15], X[18, 9, 19, 10],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 161]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[7, 14, 8, 15], X[18, 9, 19, 10],
X[6, 19, 7, 20], X[16, 5, 17, 6], X[10, 17, 11, 18], X[13, 8, 14, 9],
X[6, 19, 7, 20], X[16, 5, 17, 6], X[10, 17, 11, 18], X[13, 8, 14, 9],
X[20, 15, 1, 16], X[11, 2, 12, 3]]</nowiki></pre></td></tr>
X[20, 15, 1, 16], X[11, 2, 12, 3]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 161]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 10, -2, 1, 6, -5, -3, 8, 4, -7, -10, 2, -8, 3, 9, -6, 7,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 161]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, 6, -5, -3, 8, 4, -7, -10, 2, -8, 3, 9, -6, 7,
-4, 5, -9]</nowiki></pre></td></tr>
-4, 5, -9]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 161]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 12, -16, 14, -18, 2, 8, -20, -10, -6]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 161]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 161]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2, -1, -1, -2, -2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, -16, 14, -18, 2, 8, -20, -10, -6]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 161]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 161]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2, -1, -1, -2, -2}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 161]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_161_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 161]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 161]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 161]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 161]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_161_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 161]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 161]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 3
3 + t - - - 2 t + t
3 + t - - - 2 t + t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 161]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 161]][z]</nowiki></code></td></tr>
1 + 7 z + 6 z + z</nowiki></pre></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 161]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 7 z + 6 z + z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 161]], KnotSignature[Knot[10, 161]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, -4}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 161]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -11 -10 -9 -8 -7 -6 -3
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
-q + q - q + q - q + q + q</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 161]}</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 161]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 161]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 161]], KnotSignature[Knot[10, 161]]}</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -34 -30 -28 -22 -18 -16 -14 -12 -10
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
-q - q - q + q + q + q + q + q + q</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, -4}</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 161]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 6 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
3 a - a - a + 9 a z - a z - a z + 6 a z + a z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 161]][q]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 161]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 7 11 13 6 2 8 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -11 -10 -9 -8 -7 -6 -3
-q + q - q + q - q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 161]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 161]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -34 -30 -28 -22 -18 -16 -14 -12 -10
-q - q - q + q + q + q + q + q + q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 161]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 6 6
3 a - a - a + 9 a z - a z - a z + 6 a z + a z</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 161]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 7 11 13 6 2 8 2
-3 a - a + a + 2 a z + a z + 3 a z + 9 a z + 3 a z -
-3 a - a + a + 2 a z + a z + 3 a z + 9 a z + 3 a z -
Line 149: Line 191:
10 4 12 4 11 5 13 5 6 6 12 6
10 4 12 4 11 5 13 5 6 6 12 6
a z - 4 a z + a z + a z + a z + a z</nowiki></pre></td></tr>
a z - 4 a z + a z + a z + a z + a z</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 161]], Vassiliev[3][Knot[10, 161]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{7, -18}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 161]], Vassiliev[3][Knot[10, 161]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 161]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -5 1 1 1 1 1 1
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, -18}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 161]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 1 1 1 1 1
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
q + q + ------ + ------ + ------ + ------ + ------ + ------ +
23 9 19 8 19 7 17 6 15 6 17 5
23 9 19 8 19 7 17 6 15 6 17 5
Line 163: Line 213:
------ + ------ + ------ + ------ + ------ + ----- + -----
------ + ------ + ------ + ------ + ------ + ----- + -----
15 5 13 5 13 4 11 4 13 3 9 3 9 2
15 5 13 5 13 4 11 4 13 3 9 3 9 2
q t q t q t q t q t q t q t</nowiki></pre></td></tr>
q t q t q t q t q t q t q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 161], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -31 -30 -29 2 2 -25 -24 -23 -22 -21
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 161], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -31 -30 -29 2 2 -25 -24 -23 -22 -21
q - q - q + --- - --- + q + q - q - q + q -
q - q - q + --- - --- + q + q - q - q + q -
28 26
28 26
Line 174: Line 228:
--- + --- - --- + q + q - q + q + q
--- + --- - --- + q + q - q + q + q
19 18 16
19 18 16
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 16:57, 1 September 2005

10 160.gif

10_160

10 162.gif

10_162

10 161.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 161's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 161 at Knotilus!


Warning. In 1973 K. Perko noticed that the knots that were later labeled 10161 and 10162 in Rolfsen's tables (which were published in 1976 and were based on earlier tables by Little (1900) and Conway (1970)) are in fact the same. In our table we removed Rolfsen's 10162 and renumbered the subsequent knots, so that our 10 crossings total is 165, one less than Rolfsen's 166. Read more: [1] [2] [3] [4].

Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X7,14,8,15 X18,9,19,10 X6,19,7,20 X16,5,17,6 X10,17,11,18 X13,8,14,9 X20,15,1,16 X11,2,12,3
Gauss code -1, 10, -2, 1, 6, -5, -3, 8, 4, -7, -10, 2, -8, 3, 9, -6, 7, -4, 5, -9
Dowker-Thistlethwaite code 4 12 -16 14 -18 2 8 -20 -10 -6
Conway Notation [3:-20:-20]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 161 ML.gif 10 161 AP.gif
[{11, 3}, {1, 9}, {8, 10}, {9, 11}, {2, 7}, {6, 8}, {7, 4}, {10, 5}, {3, 6}, {4, 1}, {5, 2}]

[edit Notes on presentations of 10 161]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][5]
Hyperbolic Volume 5.63877
A-Polynomial See Data:10 161/A-polynomial

[edit Notes for 10 161's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 3 }[/math]
Topological 4 genus [math]\displaystyle{ 3 }[/math]
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for 10 161's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^3-2 t+3-2 t^{-1} + t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ z^6+6 z^4+7 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 5, -4 }
Jones polynomial [math]\displaystyle{ q^{-3} + q^{-6} - q^{-7} + q^{-8} - q^{-9} + q^{-10} - q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^{10}-a^{10}-z^2 a^8-a^8+z^6 a^6+6 z^4 a^6+9 z^2 a^6+3 a^6 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^5 a^{13}-4 z^3 a^{13}+3 z a^{13}+z^6 a^{12}-4 z^4 a^{12}+3 z^2 a^{12}+z^5 a^{11}-3 z^3 a^{11}+z a^{11}+z^4 a^{10}-3 z^2 a^{10}+a^{10}-z^4 a^8+3 z^2 a^8-a^8-z^3 a^7+2 z a^7+z^6 a^6-6 z^4 a^6+9 z^2 a^6-3 a^6 }[/math]
The A2 invariant [math]\displaystyle{ -q^{34}-q^{30}-q^{28}+q^{22}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10} }[/math]
The G2 invariant [math]\displaystyle{ q^{176}+q^{172}-q^{170}+q^{166}-q^{164}+q^{162}+q^{160}-q^{158}+q^{156}-q^{154}-q^{152}+2 q^{150}-4 q^{148}-2 q^{142}+q^{140}-2 q^{138}-q^{136}-2 q^{132}-q^{130}-q^{126}+q^{124}+q^{118}+q^{116}-q^{112}+2 q^{110}-q^{108}+2 q^{106}-2 q^{102}+2 q^{100}-q^{98}-q^{96}-2 q^{92}+q^{88}-2 q^{86}+2 q^{84}+q^{78}-q^{76}+2 q^{74}+2 q^{72}+q^{70}+q^{68}+q^{66}+q^{64}+2 q^{62}+q^{58}+q^{56}+q^{52}+q^{50} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (7, -18)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 28 }[/math] [math]\displaystyle{ -144 }[/math] [math]\displaystyle{ 392 }[/math] [math]\displaystyle{ \frac{2882}{3} }[/math] [math]\displaystyle{ \frac{430}{3} }[/math] [math]\displaystyle{ -4032 }[/math] [math]\displaystyle{ -7104 }[/math] [math]\displaystyle{ -1248 }[/math] [math]\displaystyle{ -912 }[/math] [math]\displaystyle{ \frac{10976}{3} }[/math] [math]\displaystyle{ 10368 }[/math] [math]\displaystyle{ \frac{80696}{3} }[/math] [math]\displaystyle{ \frac{12040}{3} }[/math] [math]\displaystyle{ \frac{1607257}{30} }[/math] [math]\displaystyle{ \frac{25966}{15} }[/math] [math]\displaystyle{ \frac{914594}{45} }[/math] [math]\displaystyle{ \frac{6599}{18} }[/math] [math]\displaystyle{ \frac{78457}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 10 161. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-5         11
-7         11
-9      11  0
-11     1    1
-13    121   0
-15   11     0
-17   11     0
-19 11       0
-21          0
-231         -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-7 }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-9 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials