10 161: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
| (3 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 161 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,6,-5,-3,8,4,-7,-10,2,-8,3,9,-6,7,-4,5,-9/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=161|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,10,-2,1,6,-5,-3,8,4,-7,-10,2,-8,3,9,-6,7,-4,5,-9/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
<td width=14.2857%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.14286%>-9</td ><td width=7.14286%>-8</td ><td width=7.14286%>-7</td ><td width=7.14286%>-6</td ><td width=7.14286%>-5</td ><td width=7.14286%>-4</td ><td width=7.14286%>-3</td ><td width=7.14286%>-2</td ><td width=7.14286%>-1</td ><td width=7.14286%>0</td ><td width=14.2857%>χ</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>-5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td bgcolor=red>1</td><td>1</td></tr> |
<tr align=center><td>-7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td bgcolor=red>1</td><td>1</td></tr> |
||
| Line 69: | Line 37: | ||
<tr align=center><td>-21</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-21</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-23</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math> q^{-6} + q^{-11} - q^{-13} + q^{-14} + q^{-15} -2 q^{-16} +2 q^{-18} -2 q^{-19} + q^{-21} - q^{-22} - q^{-23} + q^{-24} + q^{-25} -2 q^{-26} +2 q^{-28} - q^{-29} - q^{-30} + q^{-31} </math> | |
|||
coloured_jones_3 = <math> q^{-9} + q^{-16} + q^{-18} -2 q^{-19} +3 q^{-22} -4 q^{-24} -2 q^{-25} +4 q^{-26} +4 q^{-27} -3 q^{-28} -6 q^{-29} +3 q^{-30} +6 q^{-31} -2 q^{-32} -7 q^{-33} +2 q^{-34} +6 q^{-35} -2 q^{-36} -7 q^{-37} +2 q^{-38} +6 q^{-39} -2 q^{-40} -5 q^{-41} +2 q^{-42} +4 q^{-43} - q^{-44} -2 q^{-45} + q^{-47} + q^{-49} -2 q^{-51} - q^{-52} +2 q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-58} + q^{-59} - q^{-60} </math> | |
|||
{{Display Coloured Jones|J2=<math> q^{-6} + q^{-11} - q^{-13} + q^{-14} + q^{-15} -2 q^{-16} +2 q^{-18} -2 q^{-19} + q^{-21} - q^{-22} - q^{-23} + q^{-24} + q^{-25} -2 q^{-26} +2 q^{-28} - q^{-29} - q^{-30} + q^{-31} </math>|J3=<math> q^{-9} + q^{-16} + q^{-18} -2 q^{-19} +3 q^{-22} -4 q^{-24} -2 q^{-25} +4 q^{-26} +4 q^{-27} -3 q^{-28} -6 q^{-29} +3 q^{-30} +6 q^{-31} -2 q^{-32} -7 q^{-33} +2 q^{-34} +6 q^{-35} -2 q^{-36} -7 q^{-37} +2 q^{-38} +6 q^{-39} -2 q^{-40} -5 q^{-41} +2 q^{-42} +4 q^{-43} - q^{-44} -2 q^{-45} + q^{-47} + q^{-49} -2 q^{-51} - q^{-52} +2 q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-58} + q^{-59} - q^{-60} </math>|J4=<math> q^{-12} + q^{-21} + q^{-23} -2 q^{-25} - q^{-27} +2 q^{-28} +2 q^{-29} - q^{-30} -3 q^{-32} + q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} + q^{-38} -4 q^{-39} -7 q^{-40} +9 q^{-42} +8 q^{-43} -3 q^{-44} -15 q^{-45} -8 q^{-46} +13 q^{-47} +14 q^{-48} -18 q^{-50} -12 q^{-51} +14 q^{-52} +15 q^{-53} +2 q^{-54} -18 q^{-55} -13 q^{-56} +14 q^{-57} +15 q^{-58} + q^{-59} -17 q^{-60} -12 q^{-61} +13 q^{-62} +15 q^{-63} + q^{-64} -15 q^{-65} -12 q^{-66} +10 q^{-67} +13 q^{-68} +4 q^{-69} -11 q^{-70} -12 q^{-71} +4 q^{-72} +10 q^{-73} +7 q^{-74} -5 q^{-75} -9 q^{-76} - q^{-77} +3 q^{-78} +4 q^{-79} + q^{-80} -2 q^{-81} - q^{-82} -2 q^{-84} + q^{-86} +2 q^{-87} +3 q^{-88} -3 q^{-89} -2 q^{-90} - q^{-91} +3 q^{-93} - q^{-96} - q^{-97} + q^{-98} </math>|J5=<math> q^{-15} + q^{-26} + q^{-28} -2 q^{-31} - q^{-33} + q^{-34} + q^{-35} + q^{-36} - q^{-40} - q^{-41} - q^{-42} -2 q^{-43} +5 q^{-45} +5 q^{-46} + q^{-47} -2 q^{-48} -8 q^{-49} -7 q^{-50} +7 q^{-52} +8 q^{-53} +6 q^{-54} -2 q^{-55} -8 q^{-56} -10 q^{-57} -6 q^{-58} +3 q^{-59} +11 q^{-60} +11 q^{-61} +6 q^{-62} -7 q^{-63} -18 q^{-64} -14 q^{-65} +4 q^{-66} +18 q^{-67} +20 q^{-68} +4 q^{-69} -21 q^{-70} -25 q^{-71} -5 q^{-72} +20 q^{-73} +26 q^{-74} +7 q^{-75} -19 q^{-76} -27 q^{-77} -8 q^{-78} +20 q^{-79} +26 q^{-80} +7 q^{-81} -18 q^{-82} -26 q^{-83} -8 q^{-84} +20 q^{-85} +26 q^{-86} +7 q^{-87} -18 q^{-88} -25 q^{-89} -8 q^{-90} +18 q^{-91} +24 q^{-92} +8 q^{-93} -15 q^{-94} -23 q^{-95} -10 q^{-96} +11 q^{-97} +22 q^{-98} +13 q^{-99} -7 q^{-100} -20 q^{-101} -16 q^{-102} + q^{-103} +16 q^{-104} +19 q^{-105} +5 q^{-106} -11 q^{-107} -19 q^{-108} -12 q^{-109} +6 q^{-110} +16 q^{-111} +15 q^{-112} +2 q^{-113} -12 q^{-114} -14 q^{-115} -7 q^{-116} +5 q^{-117} +10 q^{-118} +7 q^{-119} + q^{-120} -3 q^{-121} -6 q^{-122} -3 q^{-123} + q^{-124} + q^{-126} +2 q^{-127} +2 q^{-128} + q^{-129} + q^{-130} -2 q^{-131} -4 q^{-132} -2 q^{-133} + q^{-134} +2 q^{-135} +2 q^{-136} +2 q^{-137} - q^{-138} -2 q^{-139} - q^{-140} + q^{-143} + q^{-144} - q^{-145} </math>|J6=<math> q^{-18} + q^{-31} + q^{-33} -2 q^{-37} - q^{-39} + q^{-40} +2 q^{-43} +2 q^{-47} -2 q^{-48} -3 q^{-49} -2 q^{-51} - q^{-52} + q^{-53} +7 q^{-54} +3 q^{-55} - q^{-56} +2 q^{-57} -4 q^{-58} -6 q^{-59} -5 q^{-60} +2 q^{-61} -2 q^{-63} +8 q^{-64} +5 q^{-65} +6 q^{-66} + q^{-68} -10 q^{-69} -19 q^{-70} -8 q^{-71} -2 q^{-72} +17 q^{-73} +18 q^{-74} +25 q^{-75} +5 q^{-76} -19 q^{-77} -29 q^{-78} -33 q^{-79} -5 q^{-80} +10 q^{-81} +43 q^{-82} +39 q^{-83} +15 q^{-84} -21 q^{-85} -50 q^{-86} -38 q^{-87} -24 q^{-88} +31 q^{-89} +57 q^{-90} +51 q^{-91} +4 q^{-92} -44 q^{-93} -53 q^{-94} -51 q^{-95} +11 q^{-96} +57 q^{-97} +67 q^{-98} +18 q^{-99} -35 q^{-100} -53 q^{-101} -60 q^{-102} +2 q^{-103} +55 q^{-104} +70 q^{-105} +19 q^{-106} -33 q^{-107} -50 q^{-108} -60 q^{-109} +55 q^{-111} +70 q^{-112} +19 q^{-113} -34 q^{-114} -51 q^{-115} -59 q^{-116} + q^{-117} +55 q^{-118} +69 q^{-119} +18 q^{-120} -33 q^{-121} -51 q^{-122} -56 q^{-123} + q^{-124} +52 q^{-125} +64 q^{-126} +17 q^{-127} -28 q^{-128} -45 q^{-129} -52 q^{-130} -4 q^{-131} +40 q^{-132} +56 q^{-133} +21 q^{-134} -14 q^{-135} -30 q^{-136} -48 q^{-137} -18 q^{-138} +19 q^{-139} +41 q^{-140} +27 q^{-141} +10 q^{-142} -7 q^{-143} -36 q^{-144} -32 q^{-145} -8 q^{-146} +15 q^{-147} +19 q^{-148} +27 q^{-149} +21 q^{-150} -8 q^{-151} -24 q^{-152} -24 q^{-153} -16 q^{-154} -6 q^{-155} +17 q^{-156} +30 q^{-157} +19 q^{-158} +3 q^{-159} -9 q^{-160} -22 q^{-161} -23 q^{-162} -8 q^{-163} +9 q^{-164} +16 q^{-165} +15 q^{-166} +10 q^{-167} -2 q^{-168} -9 q^{-169} -11 q^{-170} -7 q^{-171} -2 q^{-172} +3 q^{-173} +4 q^{-174} +4 q^{-175} +4 q^{-176} + q^{-177} - q^{-179} -5 q^{-181} -3 q^{-182} - q^{-183} +2 q^{-185} +3 q^{-186} +5 q^{-187} - q^{-188} - q^{-189} -2 q^{-190} -2 q^{-191} -2 q^{-192} +3 q^{-194} + q^{-196} - q^{-199} - q^{-200} + q^{-201} </math>|J7=<math> q^{-21} + q^{-36} + q^{-38} -2 q^{-43} - q^{-45} + q^{-46} - q^{-48} + q^{-49} +2 q^{-50} +2 q^{-54} + q^{-55} -4 q^{-56} -2 q^{-57} - q^{-59} -2 q^{-60} - q^{-61} +4 q^{-62} +5 q^{-63} + q^{-64} +2 q^{-66} + q^{-67} -3 q^{-68} -6 q^{-69} - q^{-70} -3 q^{-71} -3 q^{-72} -4 q^{-73} +2 q^{-74} +9 q^{-75} +7 q^{-76} +6 q^{-77} +8 q^{-78} + q^{-79} -7 q^{-80} -16 q^{-81} -17 q^{-82} -5 q^{-83} -5 q^{-84} +4 q^{-85} +19 q^{-86} +18 q^{-87} +17 q^{-88} +6 q^{-89} -4 q^{-90} -8 q^{-91} -23 q^{-92} -28 q^{-93} -16 q^{-94} -11 q^{-95} +10 q^{-96} +28 q^{-97} +36 q^{-98} +45 q^{-99} +18 q^{-100} -13 q^{-101} -39 q^{-102} -66 q^{-103} -61 q^{-104} -23 q^{-105} +23 q^{-106} +78 q^{-107} +92 q^{-108} +66 q^{-109} +16 q^{-110} -68 q^{-111} -114 q^{-112} -109 q^{-113} -56 q^{-114} +43 q^{-115} +119 q^{-116} +137 q^{-117} +96 q^{-118} -10 q^{-119} -114 q^{-120} -157 q^{-121} -126 q^{-122} -11 q^{-123} +104 q^{-124} +160 q^{-125} +143 q^{-126} +33 q^{-127} -95 q^{-128} -165 q^{-129} -149 q^{-130} -39 q^{-131} +89 q^{-132} +161 q^{-133} +152 q^{-134} +45 q^{-135} -88 q^{-136} -161 q^{-137} -150 q^{-138} -44 q^{-139} +85 q^{-140} +160 q^{-141} +151 q^{-142} +45 q^{-143} -88 q^{-144} -160 q^{-145} -149 q^{-146} -44 q^{-147} +85 q^{-148} +160 q^{-149} +151 q^{-150} +45 q^{-151} -88 q^{-152} -160 q^{-153} -149 q^{-154} -43 q^{-155} +85 q^{-156} +159 q^{-157} +149 q^{-158} +43 q^{-159} -86 q^{-160} -158 q^{-161} -146 q^{-162} -42 q^{-163} +82 q^{-164} +153 q^{-165} +142 q^{-166} +45 q^{-167} -76 q^{-168} -146 q^{-169} -138 q^{-170} -49 q^{-171} +65 q^{-172} +134 q^{-173} +134 q^{-174} +57 q^{-175} -47 q^{-176} -119 q^{-177} -128 q^{-178} -69 q^{-179} +24 q^{-180} +99 q^{-181} +119 q^{-182} +81 q^{-183} +2 q^{-184} -71 q^{-185} -104 q^{-186} -89 q^{-187} -28 q^{-188} +37 q^{-189} +80 q^{-190} +87 q^{-191} +53 q^{-192} -4 q^{-193} -47 q^{-194} -72 q^{-195} -62 q^{-196} -27 q^{-197} +8 q^{-198} +46 q^{-199} +56 q^{-200} +44 q^{-201} +23 q^{-202} -11 q^{-203} -33 q^{-204} -40 q^{-205} -43 q^{-206} -23 q^{-207} +4 q^{-208} +23 q^{-209} +41 q^{-210} +34 q^{-211} +25 q^{-212} +7 q^{-213} -23 q^{-214} -35 q^{-215} -34 q^{-216} -23 q^{-217} -3 q^{-218} +14 q^{-219} +27 q^{-220} +34 q^{-221} +16 q^{-222} + q^{-223} -9 q^{-224} -19 q^{-225} -19 q^{-226} -15 q^{-227} -4 q^{-228} +8 q^{-229} +9 q^{-230} +8 q^{-231} +10 q^{-232} +4 q^{-233} + q^{-234} -3 q^{-235} -5 q^{-236} -3 q^{-237} -3 q^{-238} -5 q^{-239} -2 q^{-240} + q^{-242} +5 q^{-243} +3 q^{-244} +3 q^{-245} +3 q^{-246} -2 q^{-248} -4 q^{-249} -5 q^{-250} +3 q^{-254} +2 q^{-255} +2 q^{-256} -2 q^{-258} - q^{-259} - q^{-261} + q^{-264} + q^{-265} - q^{-266} </math>}} |
|||
coloured_jones_4 = <math> q^{-12} + q^{-21} + q^{-23} -2 q^{-25} - q^{-27} +2 q^{-28} +2 q^{-29} - q^{-30} -3 q^{-32} + q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} + q^{-38} -4 q^{-39} -7 q^{-40} +9 q^{-42} +8 q^{-43} -3 q^{-44} -15 q^{-45} -8 q^{-46} +13 q^{-47} +14 q^{-48} -18 q^{-50} -12 q^{-51} +14 q^{-52} +15 q^{-53} +2 q^{-54} -18 q^{-55} -13 q^{-56} +14 q^{-57} +15 q^{-58} + q^{-59} -17 q^{-60} -12 q^{-61} +13 q^{-62} +15 q^{-63} + q^{-64} -15 q^{-65} -12 q^{-66} +10 q^{-67} +13 q^{-68} +4 q^{-69} -11 q^{-70} -12 q^{-71} +4 q^{-72} +10 q^{-73} +7 q^{-74} -5 q^{-75} -9 q^{-76} - q^{-77} +3 q^{-78} +4 q^{-79} + q^{-80} -2 q^{-81} - q^{-82} -2 q^{-84} + q^{-86} +2 q^{-87} +3 q^{-88} -3 q^{-89} -2 q^{-90} - q^{-91} +3 q^{-93} - q^{-96} - q^{-97} + q^{-98} </math> | |
|||
coloured_jones_5 = <math> q^{-15} + q^{-26} + q^{-28} -2 q^{-31} - q^{-33} + q^{-34} + q^{-35} + q^{-36} - q^{-40} - q^{-41} - q^{-42} -2 q^{-43} +5 q^{-45} +5 q^{-46} + q^{-47} -2 q^{-48} -8 q^{-49} -7 q^{-50} +7 q^{-52} +8 q^{-53} +6 q^{-54} -2 q^{-55} -8 q^{-56} -10 q^{-57} -6 q^{-58} +3 q^{-59} +11 q^{-60} +11 q^{-61} +6 q^{-62} -7 q^{-63} -18 q^{-64} -14 q^{-65} +4 q^{-66} +18 q^{-67} +20 q^{-68} +4 q^{-69} -21 q^{-70} -25 q^{-71} -5 q^{-72} +20 q^{-73} +26 q^{-74} +7 q^{-75} -19 q^{-76} -27 q^{-77} -8 q^{-78} +20 q^{-79} +26 q^{-80} +7 q^{-81} -18 q^{-82} -26 q^{-83} -8 q^{-84} +20 q^{-85} +26 q^{-86} +7 q^{-87} -18 q^{-88} -25 q^{-89} -8 q^{-90} +18 q^{-91} +24 q^{-92} +8 q^{-93} -15 q^{-94} -23 q^{-95} -10 q^{-96} +11 q^{-97} +22 q^{-98} +13 q^{-99} -7 q^{-100} -20 q^{-101} -16 q^{-102} + q^{-103} +16 q^{-104} +19 q^{-105} +5 q^{-106} -11 q^{-107} -19 q^{-108} -12 q^{-109} +6 q^{-110} +16 q^{-111} +15 q^{-112} +2 q^{-113} -12 q^{-114} -14 q^{-115} -7 q^{-116} +5 q^{-117} +10 q^{-118} +7 q^{-119} + q^{-120} -3 q^{-121} -6 q^{-122} -3 q^{-123} + q^{-124} + q^{-126} +2 q^{-127} +2 q^{-128} + q^{-129} + q^{-130} -2 q^{-131} -4 q^{-132} -2 q^{-133} + q^{-134} +2 q^{-135} +2 q^{-136} +2 q^{-137} - q^{-138} -2 q^{-139} - q^{-140} + q^{-143} + q^{-144} - q^{-145} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math> q^{-18} + q^{-31} + q^{-33} -2 q^{-37} - q^{-39} + q^{-40} +2 q^{-43} +2 q^{-47} -2 q^{-48} -3 q^{-49} -2 q^{-51} - q^{-52} + q^{-53} +7 q^{-54} +3 q^{-55} - q^{-56} +2 q^{-57} -4 q^{-58} -6 q^{-59} -5 q^{-60} +2 q^{-61} -2 q^{-63} +8 q^{-64} +5 q^{-65} +6 q^{-66} + q^{-68} -10 q^{-69} -19 q^{-70} -8 q^{-71} -2 q^{-72} +17 q^{-73} +18 q^{-74} +25 q^{-75} +5 q^{-76} -19 q^{-77} -29 q^{-78} -33 q^{-79} -5 q^{-80} +10 q^{-81} +43 q^{-82} +39 q^{-83} +15 q^{-84} -21 q^{-85} -50 q^{-86} -38 q^{-87} -24 q^{-88} +31 q^{-89} +57 q^{-90} +51 q^{-91} +4 q^{-92} -44 q^{-93} -53 q^{-94} -51 q^{-95} +11 q^{-96} +57 q^{-97} +67 q^{-98} +18 q^{-99} -35 q^{-100} -53 q^{-101} -60 q^{-102} +2 q^{-103} +55 q^{-104} +70 q^{-105} +19 q^{-106} -33 q^{-107} -50 q^{-108} -60 q^{-109} +55 q^{-111} +70 q^{-112} +19 q^{-113} -34 q^{-114} -51 q^{-115} -59 q^{-116} + q^{-117} +55 q^{-118} +69 q^{-119} +18 q^{-120} -33 q^{-121} -51 q^{-122} -56 q^{-123} + q^{-124} +52 q^{-125} +64 q^{-126} +17 q^{-127} -28 q^{-128} -45 q^{-129} -52 q^{-130} -4 q^{-131} +40 q^{-132} +56 q^{-133} +21 q^{-134} -14 q^{-135} -30 q^{-136} -48 q^{-137} -18 q^{-138} +19 q^{-139} +41 q^{-140} +27 q^{-141} +10 q^{-142} -7 q^{-143} -36 q^{-144} -32 q^{-145} -8 q^{-146} +15 q^{-147} +19 q^{-148} +27 q^{-149} +21 q^{-150} -8 q^{-151} -24 q^{-152} -24 q^{-153} -16 q^{-154} -6 q^{-155} +17 q^{-156} +30 q^{-157} +19 q^{-158} +3 q^{-159} -9 q^{-160} -22 q^{-161} -23 q^{-162} -8 q^{-163} +9 q^{-164} +16 q^{-165} +15 q^{-166} +10 q^{-167} -2 q^{-168} -9 q^{-169} -11 q^{-170} -7 q^{-171} -2 q^{-172} +3 q^{-173} +4 q^{-174} +4 q^{-175} +4 q^{-176} + q^{-177} - q^{-179} -5 q^{-181} -3 q^{-182} - q^{-183} +2 q^{-185} +3 q^{-186} +5 q^{-187} - q^{-188} - q^{-189} -2 q^{-190} -2 q^{-191} -2 q^{-192} +3 q^{-194} + q^{-196} - q^{-199} - q^{-200} + q^{-201} </math> | |
|||
coloured_jones_7 = <math> q^{-21} + q^{-36} + q^{-38} -2 q^{-43} - q^{-45} + q^{-46} - q^{-48} + q^{-49} +2 q^{-50} +2 q^{-54} + q^{-55} -4 q^{-56} -2 q^{-57} - q^{-59} -2 q^{-60} - q^{-61} +4 q^{-62} +5 q^{-63} + q^{-64} +2 q^{-66} + q^{-67} -3 q^{-68} -6 q^{-69} - q^{-70} -3 q^{-71} -3 q^{-72} -4 q^{-73} +2 q^{-74} +9 q^{-75} +7 q^{-76} +6 q^{-77} +8 q^{-78} + q^{-79} -7 q^{-80} -16 q^{-81} -17 q^{-82} -5 q^{-83} -5 q^{-84} +4 q^{-85} +19 q^{-86} +18 q^{-87} +17 q^{-88} +6 q^{-89} -4 q^{-90} -8 q^{-91} -23 q^{-92} -28 q^{-93} -16 q^{-94} -11 q^{-95} +10 q^{-96} +28 q^{-97} +36 q^{-98} +45 q^{-99} +18 q^{-100} -13 q^{-101} -39 q^{-102} -66 q^{-103} -61 q^{-104} -23 q^{-105} +23 q^{-106} +78 q^{-107} +92 q^{-108} +66 q^{-109} +16 q^{-110} -68 q^{-111} -114 q^{-112} -109 q^{-113} -56 q^{-114} +43 q^{-115} +119 q^{-116} +137 q^{-117} +96 q^{-118} -10 q^{-119} -114 q^{-120} -157 q^{-121} -126 q^{-122} -11 q^{-123} +104 q^{-124} +160 q^{-125} +143 q^{-126} +33 q^{-127} -95 q^{-128} -165 q^{-129} -149 q^{-130} -39 q^{-131} +89 q^{-132} +161 q^{-133} +152 q^{-134} +45 q^{-135} -88 q^{-136} -161 q^{-137} -150 q^{-138} -44 q^{-139} +85 q^{-140} +160 q^{-141} +151 q^{-142} +45 q^{-143} -88 q^{-144} -160 q^{-145} -149 q^{-146} -44 q^{-147} +85 q^{-148} +160 q^{-149} +151 q^{-150} +45 q^{-151} -88 q^{-152} -160 q^{-153} -149 q^{-154} -43 q^{-155} +85 q^{-156} +159 q^{-157} +149 q^{-158} +43 q^{-159} -86 q^{-160} -158 q^{-161} -146 q^{-162} -42 q^{-163} +82 q^{-164} +153 q^{-165} +142 q^{-166} +45 q^{-167} -76 q^{-168} -146 q^{-169} -138 q^{-170} -49 q^{-171} +65 q^{-172} +134 q^{-173} +134 q^{-174} +57 q^{-175} -47 q^{-176} -119 q^{-177} -128 q^{-178} -69 q^{-179} +24 q^{-180} +99 q^{-181} +119 q^{-182} +81 q^{-183} +2 q^{-184} -71 q^{-185} -104 q^{-186} -89 q^{-187} -28 q^{-188} +37 q^{-189} +80 q^{-190} +87 q^{-191} +53 q^{-192} -4 q^{-193} -47 q^{-194} -72 q^{-195} -62 q^{-196} -27 q^{-197} +8 q^{-198} +46 q^{-199} +56 q^{-200} +44 q^{-201} +23 q^{-202} -11 q^{-203} -33 q^{-204} -40 q^{-205} -43 q^{-206} -23 q^{-207} +4 q^{-208} +23 q^{-209} +41 q^{-210} +34 q^{-211} +25 q^{-212} +7 q^{-213} -23 q^{-214} -35 q^{-215} -34 q^{-216} -23 q^{-217} -3 q^{-218} +14 q^{-219} +27 q^{-220} +34 q^{-221} +16 q^{-222} + q^{-223} -9 q^{-224} -19 q^{-225} -19 q^{-226} -15 q^{-227} -4 q^{-228} +8 q^{-229} +9 q^{-230} +8 q^{-231} +10 q^{-232} +4 q^{-233} + q^{-234} -3 q^{-235} -5 q^{-236} -3 q^{-237} -3 q^{-238} -5 q^{-239} -2 q^{-240} + q^{-242} +5 q^{-243} +3 q^{-244} +3 q^{-245} +3 q^{-246} -2 q^{-248} -4 q^{-249} -5 q^{-250} +3 q^{-254} +2 q^{-255} +2 q^{-256} -2 q^{-258} - q^{-259} - q^{-261} + q^{-264} + q^{-265} - q^{-266} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 161]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[7, 14, 8, 15], X[18, 9, 19, 10], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 161]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[3, 12, 4, 13], X[7, 14, 8, 15], X[18, 9, 19, 10], |
|||
X[6, 19, 7, 20], X[16, 5, 17, 6], X[10, 17, 11, 18], X[13, 8, 14, 9], |
X[6, 19, 7, 20], X[16, 5, 17, 6], X[10, 17, 11, 18], X[13, 8, 14, 9], |
||
X[20, 15, 1, 16], X[11, 2, 12, 3]]</nowiki></ |
X[20, 15, 1, 16], X[11, 2, 12, 3]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 161]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 161]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 10, -2, 1, 6, -5, -3, 8, 4, -7, -10, 2, -8, 3, 9, -6, 7, |
|||
-4, 5, -9]</nowiki></ |
-4, 5, -9]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 161]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 161]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 161]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 12, -16, 14, -18, 2, 8, -20, -10, -6]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 161]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2, -1, -1, -2, -2}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 161]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_161_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 161]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 161]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 161]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 161]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_161_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 161]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 3, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 161]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 3 |
|||
3 + t - - - 2 t + t |
3 + t - - - 2 t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 161]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 161]][z]</nowiki></code></td></tr> |
|||
1 + 7 z + 6 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 7 z + 6 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 161]], KnotSignature[Knot[10, 161]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, -4}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -11 -10 -9 -8 -7 -6 -3 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
-q + q - q + q - q + q + q</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 161]}</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 161]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 161]], KnotSignature[Knot[10, 161]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -34 -30 -28 -22 -18 -16 -14 -12 -10 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
-q - q - q + q + q + q + q + q + q</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, -4}</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 161]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 6 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
3 a - a - a + 9 a z - a z - a z + 6 a z + a z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 161]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 161]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -11 -10 -9 -8 -7 -6 -3 |
|||
-q + q - q + q - q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 161]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 161]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -34 -30 -28 -22 -18 -16 -14 -12 -10 |
|||
-q - q - q + q + q + q + q + q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 161]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 6 2 8 2 10 2 6 4 6 6 |
|||
3 a - a - a + 9 a z - a z - a z + 6 a z + a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 161]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 6 8 10 7 11 13 6 2 8 2 |
|||
-3 a - a + a + 2 a z + a z + 3 a z + 9 a z + 3 a z - |
-3 a - a + a + 2 a z + a z + 3 a z + 9 a z + 3 a z - |
||
| Line 149: | Line 191: | ||
10 4 12 4 11 5 13 5 6 6 12 6 |
10 4 12 4 11 5 13 5 6 6 12 6 |
||
a z - 4 a z + a z + a z + a z + a z</nowiki></ |
a z - 4 a z + a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 161]], Vassiliev[3][Knot[10, 161]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 161]], Vassiliev[3][Knot[10, 161]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 161]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{7, -18}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 161]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 -5 1 1 1 1 1 1 |
|||
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
q + q + ------ + ------ + ------ + ------ + ------ + ------ + |
||
23 9 19 8 19 7 17 6 15 6 17 5 |
23 9 19 8 19 7 17 6 15 6 17 5 |
||
| Line 163: | Line 213: | ||
------ + ------ + ------ + ------ + ------ + ----- + ----- |
------ + ------ + ------ + ------ + ------ + ----- + ----- |
||
15 5 13 5 13 4 11 4 13 3 9 3 9 2 |
15 5 13 5 13 4 11 4 13 3 9 3 9 2 |
||
q t q t q t q t q t q t q t</nowiki></ |
q t q t q t q t q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 161], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 161], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -31 -30 -29 2 2 -25 -24 -23 -22 -21 |
|||
q - q - q + --- - --- + q + q - q - q + q - |
q - q - q + --- - --- + q + q - q - q + q - |
||
28 26 |
28 26 |
||
| Line 174: | Line 228: | ||
--- + --- - --- + q + q - q + q + q |
--- + --- - --- + q + q - q + q + q |
||
19 18 16 |
19 18 16 |
||
q q q</nowiki></ |
q q q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
|||
Latest revision as of 16:57, 1 September 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 161's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Warning. In 1973 K. Perko noticed that the knots that were later labeled 10161 and 10162 in Rolfsen's tables (which were published in 1976 and were based on earlier tables by Little (1900) and Conway (1970)) are in fact the same. In our table we removed Rolfsen's 10162 and renumbered the subsequent knots, so that our 10 crossings total is 165, one less than Rolfsen's 166. Read more: [1] [2] [3] [4].
Knot presentations
| Planar diagram presentation | X1425 X3,12,4,13 X7,14,8,15 X18,9,19,10 X6,19,7,20 X16,5,17,6 X10,17,11,18 X13,8,14,9 X20,15,1,16 X11,2,12,3 |
| Gauss code | -1, 10, -2, 1, 6, -5, -3, 8, 4, -7, -10, 2, -8, 3, 9, -6, 7, -4, 5, -9 |
| Dowker-Thistlethwaite code | 4 12 -16 14 -18 2 8 -20 -10 -6 |
| Conway Notation | [3:-20:-20] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
|
![]() [{11, 3}, {1, 9}, {8, 10}, {9, 11}, {2, 7}, {6, 8}, {7, 4}, {10, 5}, {3, 6}, {4, 1}, {5, 2}] |
[edit Notes on presentations of 10 161]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 161"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X7,14,8,15 X18,9,19,10 X6,19,7,20 X16,5,17,6 X10,17,11,18 X13,8,14,9 X20,15,1,16 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 10, -2, 1, 6, -5, -3, 8, 4, -7, -10, 2, -8, 3, 9, -6, 7, -4, 5, -9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 -16 14 -18 2 8 -20 -10 -6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3:-20:-20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
[math]\displaystyle{ \textrm{BR}(3,\{-1,-1,-1,-2,1,-2,-1,-1,-2,-2\}) }[/math] |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 3}, {1, 9}, {8, 10}, {9, 11}, {2, 7}, {6, 8}, {7, 4}, {10, 5}, {3, 6}, {4, 1}, {5, 2}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^3-2 t+3-2 t^{-1} + t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^6+6 z^4+7 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 5, -4 } |
| Jones polynomial | [math]\displaystyle{ q^{-3} + q^{-6} - q^{-7} + q^{-8} - q^{-9} + q^{-10} - q^{-11} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^2 a^{10}-a^{10}-z^2 a^8-a^8+z^6 a^6+6 z^4 a^6+9 z^2 a^6+3 a^6 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^5 a^{13}-4 z^3 a^{13}+3 z a^{13}+z^6 a^{12}-4 z^4 a^{12}+3 z^2 a^{12}+z^5 a^{11}-3 z^3 a^{11}+z a^{11}+z^4 a^{10}-3 z^2 a^{10}+a^{10}-z^4 a^8+3 z^2 a^8-a^8-z^3 a^7+2 z a^7+z^6 a^6-6 z^4 a^6+9 z^2 a^6-3 a^6 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{34}-q^{30}-q^{28}+q^{22}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{176}+q^{172}-q^{170}+q^{166}-q^{164}+q^{162}+q^{160}-q^{158}+q^{156}-q^{154}-q^{152}+2 q^{150}-4 q^{148}-2 q^{142}+q^{140}-2 q^{138}-q^{136}-2 q^{132}-q^{130}-q^{126}+q^{124}+q^{118}+q^{116}-q^{112}+2 q^{110}-q^{108}+2 q^{106}-2 q^{102}+2 q^{100}-q^{98}-q^{96}-2 q^{92}+q^{88}-2 q^{86}+2 q^{84}+q^{78}-q^{76}+2 q^{74}+2 q^{72}+q^{70}+q^{68}+q^{66}+q^{64}+2 q^{62}+q^{58}+q^{56}+q^{52}+q^{50} }[/math] |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | [math]\displaystyle{ -q^{23}+q^{11}+q^7+q^5 }[/math] |
| 2 | [math]\displaystyle{ q^{64}-q^{60}+q^{56}-q^{52}+q^{48}-q^{46}-q^{44}-q^{40}-q^{32}+q^{28}+q^{22}+q^{20}+q^{14}+q^{12}+q^{10} }[/math] |
| 3 | [math]\displaystyle{ -q^{123}+q^{119}+q^{117}-2 q^{113}-q^{111}+q^{109}+2 q^{107}+q^{105}-q^{103}-2 q^{101}-q^{99}+2 q^{97}+2 q^{95}-q^{93}-2 q^{91}+q^{89}+3 q^{87}-q^{83}+q^{81}+q^{79}-q^{77}-q^{75}-q^{73}-q^{71}-q^{69}-q^{67}-q^{65}+q^{61}-2 q^{57}-q^{55}+3 q^{53}+2 q^{51}-2 q^{49}-3 q^{47}-q^{45}+3 q^{43}+q^{41}-q^{39}-q^{37}+2 q^{33}+q^{31}+q^{29}+q^{21}+q^{19}+q^{17}+q^{15} }[/math] |
| 5 | [math]\displaystyle{ -q^{295}+q^{291}+q^{289}+q^{287}-q^{283}-3 q^{281}-2 q^{279}+2 q^{275}+4 q^{273}+4 q^{271}+q^{269}-3 q^{267}-4 q^{265}-5 q^{263}-4 q^{261}+5 q^{257}+7 q^{255}+7 q^{253}+3 q^{251}-5 q^{249}-10 q^{247}-10 q^{245}-3 q^{243}+6 q^{241}+14 q^{239}+13 q^{237}+2 q^{235}-11 q^{233}-16 q^{231}-11 q^{229}+13 q^{225}+15 q^{223}+8 q^{221}-5 q^{219}-15 q^{217}-12 q^{215}-2 q^{213}+11 q^{211}+14 q^{209}+5 q^{207}-7 q^{205}-13 q^{203}-7 q^{201}+3 q^{199}+9 q^{197}+6 q^{195}-2 q^{193}-7 q^{191}-5 q^{189}+2 q^{187}+4 q^{185}+2 q^{183}-q^{181}-2 q^{179}+2 q^{175}+2 q^{173}+q^{171}+q^{169}+q^{167}+q^{165}+q^{163}+q^{161}-q^{157}-q^{155}-q^{153}-q^{151}+2 q^{149}+4 q^{147}+2 q^{145}-q^{143}-7 q^{141}-9 q^{139}+11 q^{135}+14 q^{133}+3 q^{131}-11 q^{129}-18 q^{127}-11 q^{125}+6 q^{123}+18 q^{121}+15 q^{119}+q^{117}-12 q^{115}-17 q^{113}-12 q^{111}+q^{109}+11 q^{107}+12 q^{105}+6 q^{103}-2 q^{101}-9 q^{99}-11 q^{97}-6 q^{95}+q^{93}+7 q^{91}+8 q^{89}+6 q^{87}-5 q^{83}-5 q^{81}-3 q^{79}-q^{77}+q^{75}+3 q^{73}+2 q^{71}+2 q^{69}-q^{65}-2 q^{63}-2 q^{61}-q^{59}+2 q^{55}+2 q^{53}+2 q^{51}+q^{49}+q^{47}+q^{35}+q^{33}+q^{31}+q^{29}+q^{27}+q^{25} }[/math] |
| 6 | [math]\displaystyle{ q^{408}-q^{404}-q^{402}-q^{400}+2 q^{394}+3 q^{392}+2 q^{390}-2 q^{386}-4 q^{384}-5 q^{382}-3 q^{380}+4 q^{376}+6 q^{374}+7 q^{372}+5 q^{370}+q^{368}-4 q^{366}-8 q^{364}-10 q^{362}-9 q^{360}-4 q^{358}+3 q^{356}+12 q^{354}+15 q^{352}+14 q^{350}+7 q^{348}-5 q^{346}-18 q^{344}-24 q^{342}-18 q^{340}-6 q^{338}+12 q^{336}+28 q^{334}+31 q^{332}+17 q^{330}-3 q^{328}-22 q^{326}-34 q^{324}-31 q^{322}-10 q^{320}+15 q^{318}+32 q^{316}+38 q^{314}+23 q^{312}-4 q^{310}-31 q^{308}-40 q^{306}-30 q^{304}-5 q^{302}+26 q^{300}+42 q^{298}+34 q^{296}+6 q^{294}-22 q^{292}-39 q^{290}-31 q^{288}-5 q^{286}+22 q^{284}+36 q^{282}+24 q^{280}+q^{278}-23 q^{276}-29 q^{274}-14 q^{272}+7 q^{270}+21 q^{268}+17 q^{266}+2 q^{264}-12 q^{262}-16 q^{260}-8 q^{258}+4 q^{256}+9 q^{254}+5 q^{252}-q^{250}-6 q^{248}-5 q^{246}+3 q^{242}+3 q^{240}-q^{234}+q^{230}+q^{228}-q^{224}+q^{220}+q^{218}+q^{216}+q^{214}+3 q^{212}+3 q^{210}-2 q^{206}-3 q^{204}-6 q^{202}-4 q^{200}+5 q^{198}+14 q^{196}+14 q^{194}+5 q^{192}-9 q^{190}-25 q^{188}-25 q^{186}-5 q^{184}+22 q^{182}+37 q^{180}+31 q^{178}+6 q^{176}-30 q^{174}-48 q^{172}-36 q^{170}-2 q^{168}+31 q^{166}+48 q^{164}+40 q^{162}+6 q^{160}-28 q^{158}-46 q^{156}-38 q^{154}-16 q^{152}+15 q^{150}+36 q^{148}+36 q^{146}+21 q^{144}-3 q^{142}-21 q^{140}-32 q^{138}-25 q^{136}-9 q^{134}+8 q^{132}+18 q^{130}+19 q^{128}+14 q^{126}+2 q^{124}-7 q^{122}-13 q^{120}-12 q^{118}-9 q^{116}-4 q^{114}+2 q^{112}+7 q^{110}+9 q^{108}+7 q^{106}+5 q^{104}-5 q^{100}-6 q^{98}-5 q^{96}-3 q^{94}-q^{92}+2 q^{90}+4 q^{88}+3 q^{86}+2 q^{84}+2 q^{82}-2 q^{78}-2 q^{76}-2 q^{74}-2 q^{72}-q^{70}+2 q^{66}+2 q^{64}+2 q^{62}+2 q^{60}+q^{58}+q^{56}+q^{42}+q^{40}+q^{38}+q^{36}+q^{34}+q^{32}+q^{30} }[/math] |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ -q^{34}-q^{30}-q^{28}+q^{22}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10} }[/math] |
| 1,1 | [math]\displaystyle{ q^{92}+2 q^{88}-2 q^{86}-2 q^{80}+4 q^{78}-6 q^{76}+4 q^{74}-2 q^{72}+2 q^{70}-2 q^{66}+4 q^{64}-2 q^{62}+4 q^{60}-4 q^{58}+4 q^{56}-6 q^{54}-4 q^{50}-6 q^{48}-5 q^{44}+2 q^{42}-2 q^{40}+2 q^{38}+4 q^{36}+2 q^{34}+2 q^{32}+2 q^{30}+3 q^{28}+4 q^{26}+2 q^{24}+2 q^{22}+q^{20} }[/math] |
| 2,0 | [math]\displaystyle{ q^{86}+q^{84}-q^{72}+q^{70}+q^{66}-q^{62}-q^{60}-2 q^{58}-3 q^{56}-4 q^{54}-2 q^{52}-2 q^{50}+q^{44}+2 q^{42}+2 q^{40}+2 q^{38}+q^{36}+q^{34}+2 q^{32}+q^{30}+q^{28}+q^{26}+2 q^{24}+q^{22}+q^{20} }[/math] |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | [math]\displaystyle{ q^{74}+q^{70}-q^{62}-q^{58}-q^{56}-q^{54}-q^{52}-q^{50}-q^{48}-q^{46}-2 q^{44}-q^{42}-q^{40}+q^{36}+q^{34}+3 q^{32}+2 q^{30}+3 q^{28}+2 q^{26}+2 q^{24}+q^{22}+q^{20} }[/math] |
| 1,0,0 | [math]\displaystyle{ -q^{45}-q^{41}-q^{39}-q^{37}-q^{35}+q^{29}+q^{27}+q^{25}+q^{23}+2 q^{21}+q^{19}+q^{17}+q^{15} }[/math] |
| 1,0,1 | [math]\displaystyle{ q^{120}+2 q^{116}+q^{112}-2 q^{110}-q^{108}-2 q^{106}-q^{104}+2 q^{102}-3 q^{100}+4 q^{98}-2 q^{96}+4 q^{94}-3 q^{92}+q^{90}-2 q^{86}+5 q^{84}-q^{82}+8 q^{80}-q^{78}+8 q^{76}-q^{74}-3 q^{72}-3 q^{70}-10 q^{68}-8 q^{66}-13 q^{64}-6 q^{62}-9 q^{60}-3 q^{58}-3 q^{56}-q^{54}+3 q^{52}+3 q^{50}+7 q^{48}+5 q^{46}+7 q^{44}+8 q^{42}+6 q^{40}+7 q^{38}+5 q^{36}+3 q^{34}+2 q^{32}+q^{30} }[/math] |
A4 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0,0 | [math]\displaystyle{ 2 q^{92}+2 q^{90}+2 q^{88}+2 q^{86}+2 q^{84}-2 q^{80}-3 q^{78}-3 q^{76}-4 q^{74}-4 q^{72}-2 q^{70}-2 q^{68}-2 q^{66}-q^{62}-2 q^{60}-2 q^{58}-2 q^{56}-2 q^{54}-2 q^{52}+q^{50}+3 q^{48}+4 q^{46}+4 q^{44}+6 q^{42}+4 q^{40}+4 q^{38}+3 q^{36}+2 q^{34}+q^{32}+q^{30} }[/math] |
| 1,0,0,0 | [math]\displaystyle{ -q^{56}-q^{52}-q^{50}-q^{48}-q^{46}-q^{44}-q^{42}+q^{36}+q^{34}+2 q^{32}+q^{30}+2 q^{28}+2 q^{26}+q^{24}+q^{22}+q^{20} }[/math] |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | [math]\displaystyle{ -q^{74}-q^{70}+q^{62}+q^{58}-q^{56}+q^{54}-q^{52}-q^{50}-q^{48}-q^{46}-q^{42}+q^{40}+q^{36}+q^{34}+q^{32}+q^{28}+2 q^{26}+q^{22}+q^{20} }[/math] |
| 1,0 | [math]\displaystyle{ q^{120}+q^{112}-q^{108}+q^{104}-q^{100}-q^{92}-q^{90}-q^{84}-q^{82}-q^{78}-q^{74}-q^{72}-q^{70}-q^{64}+q^{60}+q^{58}-q^{56}+q^{54}+q^{52}+q^{50}+q^{48}+q^{46}+q^{44}+2 q^{42}+q^{38}+q^{36}+q^{34}+q^{30} }[/math] |
D4 Invariants.
| Weight | Invariant |
|---|---|
| 1,0,0,0 | [math]\displaystyle{ q^{102}+q^{98}+q^{94}-q^{90}-q^{86}-q^{82}-2 q^{78}-q^{74}-q^{72}-q^{70}-q^{68}-q^{66}-q^{64}-q^{62}-2 q^{60}-q^{58}-2 q^{56}-q^{52}+q^{50}+2 q^{48}+2 q^{46}+3 q^{44}+4 q^{42}+3 q^{40}+2 q^{38}+3 q^{36}+q^{34}+q^{32}+q^{30} }[/math] |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | [math]\displaystyle{ q^{176}+q^{172}-q^{170}+q^{166}-q^{164}+q^{162}+q^{160}-q^{158}+q^{156}-q^{154}-q^{152}+2 q^{150}-4 q^{148}-2 q^{142}+q^{140}-2 q^{138}-q^{136}-2 q^{132}-q^{130}-q^{126}+q^{124}+q^{118}+q^{116}-q^{112}+2 q^{110}-q^{108}+2 q^{106}-2 q^{102}+2 q^{100}-q^{98}-q^{96}-2 q^{92}+q^{88}-2 q^{86}+2 q^{84}+q^{78}-q^{76}+2 q^{74}+2 q^{72}+q^{70}+q^{68}+q^{66}+q^{64}+2 q^{62}+q^{58}+q^{56}+q^{52}+q^{50} }[/math] |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 161"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^3-2 t+3-2 t^{-1} + t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^6+6 z^4+7 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^{-3} + q^{-6} - q^{-7} + q^{-8} - q^{-9} + q^{-10} - q^{-11} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^2 a^{10}-a^{10}-z^2 a^8-a^8+z^6 a^6+6 z^4 a^6+9 z^2 a^6+3 a^6 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^5 a^{13}-4 z^3 a^{13}+3 z a^{13}+z^6 a^{12}-4 z^4 a^{12}+3 z^2 a^{12}+z^5 a^{11}-3 z^3 a^{11}+z a^{11}+z^4 a^{10}-3 z^2 a^{10}+a^{10}-z^4 a^8+3 z^2 a^8-a^8-z^3 a^7+2 z a^7+z^6 a^6-6 z^4 a^6+9 z^2 a^6-3 a^6 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 161"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^3-2 t+3-2 t^{-1} + t^{-3} }[/math], [math]\displaystyle{ q^{-3} + q^{-6} - q^{-7} + q^{-8} - q^{-9} + q^{-10} - q^{-11} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (7, -18) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of 10 161. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| [math]\displaystyle{ n }[/math] | [math]\displaystyle{ J_n }[/math] |
| 2 | [math]\displaystyle{ q^{-6} + q^{-11} - q^{-13} + q^{-14} + q^{-15} -2 q^{-16} +2 q^{-18} -2 q^{-19} + q^{-21} - q^{-22} - q^{-23} + q^{-24} + q^{-25} -2 q^{-26} +2 q^{-28} - q^{-29} - q^{-30} + q^{-31} }[/math] |
| 3 | [math]\displaystyle{ q^{-9} + q^{-16} + q^{-18} -2 q^{-19} +3 q^{-22} -4 q^{-24} -2 q^{-25} +4 q^{-26} +4 q^{-27} -3 q^{-28} -6 q^{-29} +3 q^{-30} +6 q^{-31} -2 q^{-32} -7 q^{-33} +2 q^{-34} +6 q^{-35} -2 q^{-36} -7 q^{-37} +2 q^{-38} +6 q^{-39} -2 q^{-40} -5 q^{-41} +2 q^{-42} +4 q^{-43} - q^{-44} -2 q^{-45} + q^{-47} + q^{-49} -2 q^{-51} - q^{-52} +2 q^{-53} +2 q^{-54} - q^{-55} -2 q^{-56} + q^{-58} + q^{-59} - q^{-60} }[/math] |
| 4 | [math]\displaystyle{ q^{-12} + q^{-21} + q^{-23} -2 q^{-25} - q^{-27} +2 q^{-28} +2 q^{-29} - q^{-30} -3 q^{-32} + q^{-34} - q^{-35} +3 q^{-36} +2 q^{-37} + q^{-38} -4 q^{-39} -7 q^{-40} +9 q^{-42} +8 q^{-43} -3 q^{-44} -15 q^{-45} -8 q^{-46} +13 q^{-47} +14 q^{-48} -18 q^{-50} -12 q^{-51} +14 q^{-52} +15 q^{-53} +2 q^{-54} -18 q^{-55} -13 q^{-56} +14 q^{-57} +15 q^{-58} + q^{-59} -17 q^{-60} -12 q^{-61} +13 q^{-62} +15 q^{-63} + q^{-64} -15 q^{-65} -12 q^{-66} +10 q^{-67} +13 q^{-68} +4 q^{-69} -11 q^{-70} -12 q^{-71} +4 q^{-72} +10 q^{-73} +7 q^{-74} -5 q^{-75} -9 q^{-76} - q^{-77} +3 q^{-78} +4 q^{-79} + q^{-80} -2 q^{-81} - q^{-82} -2 q^{-84} + q^{-86} +2 q^{-87} +3 q^{-88} -3 q^{-89} -2 q^{-90} - q^{-91} +3 q^{-93} - q^{-96} - q^{-97} + q^{-98} }[/math] |
| 5 | [math]\displaystyle{ q^{-15} + q^{-26} + q^{-28} -2 q^{-31} - q^{-33} + q^{-34} + q^{-35} + q^{-36} - q^{-40} - q^{-41} - q^{-42} -2 q^{-43} +5 q^{-45} +5 q^{-46} + q^{-47} -2 q^{-48} -8 q^{-49} -7 q^{-50} +7 q^{-52} +8 q^{-53} +6 q^{-54} -2 q^{-55} -8 q^{-56} -10 q^{-57} -6 q^{-58} +3 q^{-59} +11 q^{-60} +11 q^{-61} +6 q^{-62} -7 q^{-63} -18 q^{-64} -14 q^{-65} +4 q^{-66} +18 q^{-67} +20 q^{-68} +4 q^{-69} -21 q^{-70} -25 q^{-71} -5 q^{-72} +20 q^{-73} +26 q^{-74} +7 q^{-75} -19 q^{-76} -27 q^{-77} -8 q^{-78} +20 q^{-79} +26 q^{-80} +7 q^{-81} -18 q^{-82} -26 q^{-83} -8 q^{-84} +20 q^{-85} +26 q^{-86} +7 q^{-87} -18 q^{-88} -25 q^{-89} -8 q^{-90} +18 q^{-91} +24 q^{-92} +8 q^{-93} -15 q^{-94} -23 q^{-95} -10 q^{-96} +11 q^{-97} +22 q^{-98} +13 q^{-99} -7 q^{-100} -20 q^{-101} -16 q^{-102} + q^{-103} +16 q^{-104} +19 q^{-105} +5 q^{-106} -11 q^{-107} -19 q^{-108} -12 q^{-109} +6 q^{-110} +16 q^{-111} +15 q^{-112} +2 q^{-113} -12 q^{-114} -14 q^{-115} -7 q^{-116} +5 q^{-117} +10 q^{-118} +7 q^{-119} + q^{-120} -3 q^{-121} -6 q^{-122} -3 q^{-123} + q^{-124} + q^{-126} +2 q^{-127} +2 q^{-128} + q^{-129} + q^{-130} -2 q^{-131} -4 q^{-132} -2 q^{-133} + q^{-134} +2 q^{-135} +2 q^{-136} +2 q^{-137} - q^{-138} -2 q^{-139} - q^{-140} + q^{-143} + q^{-144} - q^{-145} }[/math] |
| 6 | [math]\displaystyle{ q^{-18} + q^{-31} + q^{-33} -2 q^{-37} - q^{-39} + q^{-40} +2 q^{-43} +2 q^{-47} -2 q^{-48} -3 q^{-49} -2 q^{-51} - q^{-52} + q^{-53} +7 q^{-54} +3 q^{-55} - q^{-56} +2 q^{-57} -4 q^{-58} -6 q^{-59} -5 q^{-60} +2 q^{-61} -2 q^{-63} +8 q^{-64} +5 q^{-65} +6 q^{-66} + q^{-68} -10 q^{-69} -19 q^{-70} -8 q^{-71} -2 q^{-72} +17 q^{-73} +18 q^{-74} +25 q^{-75} +5 q^{-76} -19 q^{-77} -29 q^{-78} -33 q^{-79} -5 q^{-80} +10 q^{-81} +43 q^{-82} +39 q^{-83} +15 q^{-84} -21 q^{-85} -50 q^{-86} -38 q^{-87} -24 q^{-88} +31 q^{-89} +57 q^{-90} +51 q^{-91} +4 q^{-92} -44 q^{-93} -53 q^{-94} -51 q^{-95} +11 q^{-96} +57 q^{-97} +67 q^{-98} +18 q^{-99} -35 q^{-100} -53 q^{-101} -60 q^{-102} +2 q^{-103} +55 q^{-104} +70 q^{-105} +19 q^{-106} -33 q^{-107} -50 q^{-108} -60 q^{-109} +55 q^{-111} +70 q^{-112} +19 q^{-113} -34 q^{-114} -51 q^{-115} -59 q^{-116} + q^{-117} +55 q^{-118} +69 q^{-119} +18 q^{-120} -33 q^{-121} -51 q^{-122} -56 q^{-123} + q^{-124} +52 q^{-125} +64 q^{-126} +17 q^{-127} -28 q^{-128} -45 q^{-129} -52 q^{-130} -4 q^{-131} +40 q^{-132} +56 q^{-133} +21 q^{-134} -14 q^{-135} -30 q^{-136} -48 q^{-137} -18 q^{-138} +19 q^{-139} +41 q^{-140} +27 q^{-141} +10 q^{-142} -7 q^{-143} -36 q^{-144} -32 q^{-145} -8 q^{-146} +15 q^{-147} +19 q^{-148} +27 q^{-149} +21 q^{-150} -8 q^{-151} -24 q^{-152} -24 q^{-153} -16 q^{-154} -6 q^{-155} +17 q^{-156} +30 q^{-157} +19 q^{-158} +3 q^{-159} -9 q^{-160} -22 q^{-161} -23 q^{-162} -8 q^{-163} +9 q^{-164} +16 q^{-165} +15 q^{-166} +10 q^{-167} -2 q^{-168} -9 q^{-169} -11 q^{-170} -7 q^{-171} -2 q^{-172} +3 q^{-173} +4 q^{-174} +4 q^{-175} +4 q^{-176} + q^{-177} - q^{-179} -5 q^{-181} -3 q^{-182} - q^{-183} +2 q^{-185} +3 q^{-186} +5 q^{-187} - q^{-188} - q^{-189} -2 q^{-190} -2 q^{-191} -2 q^{-192} +3 q^{-194} + q^{-196} - q^{-199} - q^{-200} + q^{-201} }[/math] |
| 7 | [math]\displaystyle{ q^{-21} + q^{-36} + q^{-38} -2 q^{-43} - q^{-45} + q^{-46} - q^{-48} + q^{-49} +2 q^{-50} +2 q^{-54} + q^{-55} -4 q^{-56} -2 q^{-57} - q^{-59} -2 q^{-60} - q^{-61} +4 q^{-62} +5 q^{-63} + q^{-64} +2 q^{-66} + q^{-67} -3 q^{-68} -6 q^{-69} - q^{-70} -3 q^{-71} -3 q^{-72} -4 q^{-73} +2 q^{-74} +9 q^{-75} +7 q^{-76} +6 q^{-77} +8 q^{-78} + q^{-79} -7 q^{-80} -16 q^{-81} -17 q^{-82} -5 q^{-83} -5 q^{-84} +4 q^{-85} +19 q^{-86} +18 q^{-87} +17 q^{-88} +6 q^{-89} -4 q^{-90} -8 q^{-91} -23 q^{-92} -28 q^{-93} -16 q^{-94} -11 q^{-95} +10 q^{-96} +28 q^{-97} +36 q^{-98} +45 q^{-99} +18 q^{-100} -13 q^{-101} -39 q^{-102} -66 q^{-103} -61 q^{-104} -23 q^{-105} +23 q^{-106} +78 q^{-107} +92 q^{-108} +66 q^{-109} +16 q^{-110} -68 q^{-111} -114 q^{-112} -109 q^{-113} -56 q^{-114} +43 q^{-115} +119 q^{-116} +137 q^{-117} +96 q^{-118} -10 q^{-119} -114 q^{-120} -157 q^{-121} -126 q^{-122} -11 q^{-123} +104 q^{-124} +160 q^{-125} +143 q^{-126} +33 q^{-127} -95 q^{-128} -165 q^{-129} -149 q^{-130} -39 q^{-131} +89 q^{-132} +161 q^{-133} +152 q^{-134} +45 q^{-135} -88 q^{-136} -161 q^{-137} -150 q^{-138} -44 q^{-139} +85 q^{-140} +160 q^{-141} +151 q^{-142} +45 q^{-143} -88 q^{-144} -160 q^{-145} -149 q^{-146} -44 q^{-147} +85 q^{-148} +160 q^{-149} +151 q^{-150} +45 q^{-151} -88 q^{-152} -160 q^{-153} -149 q^{-154} -43 q^{-155} +85 q^{-156} +159 q^{-157} +149 q^{-158} +43 q^{-159} -86 q^{-160} -158 q^{-161} -146 q^{-162} -42 q^{-163} +82 q^{-164} +153 q^{-165} +142 q^{-166} +45 q^{-167} -76 q^{-168} -146 q^{-169} -138 q^{-170} -49 q^{-171} +65 q^{-172} +134 q^{-173} +134 q^{-174} +57 q^{-175} -47 q^{-176} -119 q^{-177} -128 q^{-178} -69 q^{-179} +24 q^{-180} +99 q^{-181} +119 q^{-182} +81 q^{-183} +2 q^{-184} -71 q^{-185} -104 q^{-186} -89 q^{-187} -28 q^{-188} +37 q^{-189} +80 q^{-190} +87 q^{-191} +53 q^{-192} -4 q^{-193} -47 q^{-194} -72 q^{-195} -62 q^{-196} -27 q^{-197} +8 q^{-198} +46 q^{-199} +56 q^{-200} +44 q^{-201} +23 q^{-202} -11 q^{-203} -33 q^{-204} -40 q^{-205} -43 q^{-206} -23 q^{-207} +4 q^{-208} +23 q^{-209} +41 q^{-210} +34 q^{-211} +25 q^{-212} +7 q^{-213} -23 q^{-214} -35 q^{-215} -34 q^{-216} -23 q^{-217} -3 q^{-218} +14 q^{-219} +27 q^{-220} +34 q^{-221} +16 q^{-222} + q^{-223} -9 q^{-224} -19 q^{-225} -19 q^{-226} -15 q^{-227} -4 q^{-228} +8 q^{-229} +9 q^{-230} +8 q^{-231} +10 q^{-232} +4 q^{-233} + q^{-234} -3 q^{-235} -5 q^{-236} -3 q^{-237} -3 q^{-238} -5 q^{-239} -2 q^{-240} + q^{-242} +5 q^{-243} +3 q^{-244} +3 q^{-245} +3 q^{-246} -2 q^{-248} -4 q^{-249} -5 q^{-250} +3 q^{-254} +2 q^{-255} +2 q^{-256} -2 q^{-258} - q^{-259} - q^{-261} + q^{-264} + q^{-265} - q^{-266} }[/math] |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




