10 162: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 162 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,5,-1,6,-8,2,-3,7,10,-9,-5,4,-2,8,-6,-10,9/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=162|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-7,5,-1,6,-8,2,-3,7,10,-9,-5,4,-2,8,-6,-10,9/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = [[10_20]], [[K11n117]], | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{[[10_20]], [[K11n117]], ...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=7.69231%>2</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> |
||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
Line 71: | Line 38: | ||
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^5+2 q^4-6 q^3+q^2+12 q-14-6 q^{-1} +27 q^{-2} -18 q^{-3} -18 q^{-4} +39 q^{-5} -16 q^{-6} -27 q^{-7} +42 q^{-8} -11 q^{-9} -28 q^{-10} +32 q^{-11} -3 q^{-12} -20 q^{-13} +15 q^{-14} +2 q^{-15} -9 q^{-16} +4 q^{-17} + q^{-18} -2 q^{-19} + q^{-20} </math> | |
|||
coloured_jones_3 = <math>2 q^{11}-q^9-9 q^8+5 q^7+13 q^6+5 q^5-27 q^4-14 q^3+31 q^2+37 q-37-55 q^{-1} +25 q^{-2} +84 q^{-3} -16 q^{-4} -100 q^{-5} -4 q^{-6} +118 q^{-7} +23 q^{-8} -128 q^{-9} -42 q^{-10} +134 q^{-11} +58 q^{-12} -136 q^{-13} -69 q^{-14} +128 q^{-15} +80 q^{-16} -118 q^{-17} -83 q^{-18} +95 q^{-19} +87 q^{-20} -74 q^{-21} -76 q^{-22} +44 q^{-23} +66 q^{-24} -21 q^{-25} -51 q^{-26} +7 q^{-27} +31 q^{-28} +4 q^{-29} -19 q^{-30} -3 q^{-31} +8 q^{-32} +3 q^{-33} -5 q^{-34} + q^{-36} + q^{-37} -2 q^{-38} + q^{-39} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^5+2 q^4-6 q^3+q^2+12 q-14-6 q^{-1} +27 q^{-2} -18 q^{-3} -18 q^{-4} +39 q^{-5} -16 q^{-6} -27 q^{-7} +42 q^{-8} -11 q^{-9} -28 q^{-10} +32 q^{-11} -3 q^{-12} -20 q^{-13} +15 q^{-14} +2 q^{-15} -9 q^{-16} +4 q^{-17} + q^{-18} -2 q^{-19} + q^{-20} </math>|J3=<math>2 q^{11}-q^9-9 q^8+5 q^7+13 q^6+5 q^5-27 q^4-14 q^3+31 q^2+37 q-37-55 q^{-1} +25 q^{-2} +84 q^{-3} -16 q^{-4} -100 q^{-5} -4 q^{-6} +118 q^{-7} +23 q^{-8} -128 q^{-9} -42 q^{-10} +134 q^{-11} +58 q^{-12} -136 q^{-13} -69 q^{-14} +128 q^{-15} +80 q^{-16} -118 q^{-17} -83 q^{-18} +95 q^{-19} +87 q^{-20} -74 q^{-21} -76 q^{-22} +44 q^{-23} +66 q^{-24} -21 q^{-25} -51 q^{-26} +7 q^{-27} +31 q^{-28} +4 q^{-29} -19 q^{-30} -3 q^{-31} +8 q^{-32} +3 q^{-33} -5 q^{-34} + q^{-36} + q^{-37} -2 q^{-38} + q^{-39} </math>|J4=<math>q^{20}+2 q^{19}-6 q^{17}-4 q^{16}-5 q^{15}+14 q^{14}+23 q^{13}-5 q^{12}-17 q^{11}-53 q^{10}+q^9+68 q^8+48 q^7+24 q^6-130 q^5-95 q^4+52 q^3+123 q^2+178 q-130-223 q^{-1} -90 q^{-2} +107 q^{-3} +384 q^{-4} -2 q^{-5} -271 q^{-6} -289 q^{-7} -32 q^{-8} +528 q^{-9} +182 q^{-10} -214 q^{-11} -447 q^{-12} -214 q^{-13} +587 q^{-14} +334 q^{-15} -120 q^{-16} -536 q^{-17} -359 q^{-18} +588 q^{-19} +428 q^{-20} -29 q^{-21} -566 q^{-22} -456 q^{-23} +538 q^{-24} +470 q^{-25} +68 q^{-26} -522 q^{-27} -512 q^{-28} +402 q^{-29} +442 q^{-30} +181 q^{-31} -377 q^{-32} -496 q^{-33} +194 q^{-34} +311 q^{-35} +248 q^{-36} -159 q^{-37} -366 q^{-38} +15 q^{-39} +120 q^{-40} +206 q^{-41} +6 q^{-42} -178 q^{-43} -37 q^{-44} -12 q^{-45} +96 q^{-46} +45 q^{-47} -49 q^{-48} -10 q^{-49} -34 q^{-50} +24 q^{-51} +20 q^{-52} -11 q^{-53} +7 q^{-54} -14 q^{-55} +4 q^{-56} +5 q^{-57} -5 q^{-58} +4 q^{-59} -3 q^{-60} + q^{-61} + q^{-62} -2 q^{-63} + q^{-64} </math>|J5=<math>2 q^{31}+2 q^{29}-3 q^{28}-9 q^{27}-9 q^{26}+7 q^{25}+9 q^{24}+27 q^{23}+25 q^{22}-21 q^{21}-55 q^{20}-51 q^{19}-26 q^{18}+56 q^{17}+140 q^{16}+96 q^{15}-35 q^{14}-160 q^{13}-232 q^{12}-104 q^{11}+175 q^{10}+356 q^9+282 q^8-25 q^7-424 q^6-550 q^5-199 q^4+359 q^3+745 q^2+581 q-154-872 q^{-1} -940 q^{-2} -228 q^{-3} +814 q^{-4} +1319 q^{-5} +682 q^{-6} -632 q^{-7} -1531 q^{-8} -1194 q^{-9} +283 q^{-10} +1676 q^{-11} +1654 q^{-12} +102 q^{-13} -1662 q^{-14} -2039 q^{-15} -535 q^{-16} +1596 q^{-17} +2338 q^{-18} +905 q^{-19} -1466 q^{-20} -2551 q^{-21} -1226 q^{-22} +1334 q^{-23} +2696 q^{-24} +1486 q^{-25} -1216 q^{-26} -2793 q^{-27} -1684 q^{-28} +1094 q^{-29} +2859 q^{-30} +1856 q^{-31} -981 q^{-32} -2880 q^{-33} -2002 q^{-34} +818 q^{-35} +2861 q^{-36} +2148 q^{-37} -628 q^{-38} -2750 q^{-39} -2255 q^{-40} +331 q^{-41} +2556 q^{-42} +2334 q^{-43} -25 q^{-44} -2214 q^{-45} -2292 q^{-46} -356 q^{-47} +1769 q^{-48} +2165 q^{-49} +643 q^{-50} -1232 q^{-51} -1861 q^{-52} -869 q^{-53} +694 q^{-54} +1464 q^{-55} +939 q^{-56} -245 q^{-57} -1005 q^{-58} -845 q^{-59} -84 q^{-60} +572 q^{-61} +667 q^{-62} +237 q^{-63} -253 q^{-64} -421 q^{-65} -261 q^{-66} +36 q^{-67} +232 q^{-68} +201 q^{-69} +45 q^{-70} -85 q^{-71} -123 q^{-72} -67 q^{-73} +25 q^{-74} +53 q^{-75} +44 q^{-76} +14 q^{-77} -26 q^{-78} -27 q^{-79} -3 q^{-80} +2 q^{-81} +6 q^{-82} +14 q^{-83} -3 q^{-84} -8 q^{-85} +2 q^{-86} -3 q^{-88} +4 q^{-89} + q^{-90} -3 q^{-91} + q^{-92} + q^{-93} -2 q^{-94} + q^{-95} </math>|J6=<math>q^{45}+2 q^{44}-4 q^{41}-6 q^{40}-12 q^{39}-5 q^{38}+14 q^{37}+29 q^{36}+29 q^{35}+18 q^{34}-72 q^{32}-96 q^{31}-76 q^{30}+21 q^{29}+102 q^{28}+178 q^{27}+231 q^{26}+34 q^{25}-179 q^{24}-385 q^{23}-347 q^{22}-209 q^{21}+169 q^{20}+677 q^{19}+703 q^{18}+422 q^{17}-275 q^{16}-782 q^{15}-1239 q^{14}-902 q^{13}+261 q^{12}+1225 q^{11}+1810 q^{10}+1250 q^9+195 q^8-1737 q^7-2716 q^6-1953 q^5-182 q^4+2176 q^3+3361 q^2+3253 q+207-3020 q^{-1} -4581 q^{-2} -3777 q^{-3} -314 q^{-4} +3563 q^{-5} +6512 q^{-6} +4375 q^{-7} -262 q^{-8} -5084 q^{-9} -7360 q^{-10} -4962 q^{-11} +740 q^{-12} +7584 q^{-13} +8406 q^{-14} +4435 q^{-15} -2800 q^{-16} -8844 q^{-17} -9376 q^{-18} -3682 q^{-19} +6205 q^{-20} +10542 q^{-21} +8776 q^{-22} +712 q^{-23} -8271 q^{-24} -12083 q^{-25} -7603 q^{-26} +3880 q^{-27} +10958 q^{-28} +11562 q^{-29} +3677 q^{-30} -6968 q^{-31} -13277 q^{-32} -10104 q^{-33} +1988 q^{-34} +10705 q^{-35} +13019 q^{-36} +5510 q^{-37} -5928 q^{-38} -13775 q^{-39} -11505 q^{-40} +785 q^{-41} +10442 q^{-42} +13856 q^{-43} +6695 q^{-44} -5135 q^{-45} -14031 q^{-46} -12529 q^{-47} -380 q^{-48} +9964 q^{-49} +14436 q^{-50} +8008 q^{-51} -3808 q^{-52} -13692 q^{-53} -13472 q^{-54} -2323 q^{-55} +8368 q^{-56} +14250 q^{-57} +9627 q^{-58} -1143 q^{-59} -11712 q^{-60} -13587 q^{-61} -5011 q^{-62} +4892 q^{-63} +12095 q^{-64} +10480 q^{-65} +2496 q^{-66} -7455 q^{-67} -11493 q^{-68} -6916 q^{-69} +344 q^{-70} +7530 q^{-71} +8974 q^{-72} +5090 q^{-73} -2253 q^{-74} -6999 q^{-75} -6259 q^{-76} -2812 q^{-77} +2375 q^{-78} +5175 q^{-79} +4858 q^{-80} +1144 q^{-81} -2292 q^{-82} -3399 q^{-83} -3010 q^{-84} -657 q^{-85} +1457 q^{-86} +2606 q^{-87} +1610 q^{-88} +188 q^{-89} -760 q^{-90} -1472 q^{-91} -1037 q^{-92} -225 q^{-93} +686 q^{-94} +686 q^{-95} +484 q^{-96} +228 q^{-97} -294 q^{-98} -425 q^{-99} -327 q^{-100} +29 q^{-101} +69 q^{-102} +150 q^{-103} +212 q^{-104} +26 q^{-105} -69 q^{-106} -112 q^{-107} -13 q^{-108} -41 q^{-109} -4 q^{-110} +72 q^{-111} +26 q^{-112} -26 q^{-114} +9 q^{-115} -18 q^{-116} -16 q^{-117} +20 q^{-118} +6 q^{-119} +2 q^{-120} -9 q^{-121} +7 q^{-122} -2 q^{-123} -8 q^{-124} +6 q^{-125} + q^{-126} + q^{-127} -3 q^{-128} + q^{-129} + q^{-130} -2 q^{-131} + q^{-132} </math>|J7=<math>2 q^{61}+2 q^{59}-3 q^{57}-9 q^{56}-7 q^{55}-9 q^{54}-q^{53}+9 q^{52}+29 q^{51}+49 q^{50}+39 q^{49}-3 q^{48}-41 q^{47}-87 q^{46}-129 q^{45}-114 q^{44}-43 q^{43}+133 q^{42}+274 q^{41}+296 q^{40}+257 q^{39}+61 q^{38}-261 q^{37}-571 q^{36}-752 q^{35}-529 q^{34}+10 q^{33}+560 q^{32}+1156 q^{31}+1362 q^{30}+963 q^{29}+38 q^{28}-1319 q^{27}-2215 q^{26}-2263 q^{25}-1510 q^{24}+293 q^{23}+2367 q^{22}+3767 q^{21}+3884 q^{20}+1884 q^{19}-1184 q^{18}-4161 q^{17}-6194 q^{16}-5447 q^{15}-2119 q^{14}+2770 q^{13}+7541 q^{12}+9168 q^{11}+6989 q^{10}+1407 q^9-6299 q^8-11854 q^7-12749 q^6-7937 q^5+1924 q^4+11705 q^3+17512 q^2+15990 q+5788-7978 q^{-1} -19710 q^{-2} -23614 q^{-3} -15701 q^{-4} +238 q^{-5} +18069 q^{-6} +29365 q^{-7} +26209 q^{-8} +10339 q^{-9} -12360 q^{-10} -31518 q^{-11} -35536 q^{-12} -22629 q^{-13} +3139 q^{-14} +30029 q^{-15} +42401 q^{-16} +34538 q^{-17} +8186 q^{-18} -24901 q^{-19} -45971 q^{-20} -45074 q^{-21} -20295 q^{-22} +17490 q^{-23} +46595 q^{-24} +53136 q^{-25} +31541 q^{-26} -8783 q^{-27} -44687 q^{-28} -58709 q^{-29} -41337 q^{-30} +170 q^{-31} +41427 q^{-32} +61984 q^{-33} +49019 q^{-34} +7557 q^{-35} -37537 q^{-36} -63581 q^{-37} -54737 q^{-38} -13910 q^{-39} +33834 q^{-40} +64146 q^{-41} +58744 q^{-42} +18742 q^{-43} -30767 q^{-44} -64164 q^{-45} -61449 q^{-46} -22278 q^{-47} +28420 q^{-48} +64121 q^{-49} +63410 q^{-50} +24779 q^{-51} -26801 q^{-52} -64158 q^{-53} -64968 q^{-54} -26802 q^{-55} +25568 q^{-56} +64412 q^{-57} +66543 q^{-58} +28738 q^{-59} -24334 q^{-60} -64638 q^{-61} -68293 q^{-62} -31197 q^{-63} +22552 q^{-64} +64581 q^{-65} +70226 q^{-66} +34386 q^{-67} -19618 q^{-68} -63492 q^{-69} -72032 q^{-70} -38626 q^{-71} +14979 q^{-72} +60874 q^{-73} +73097 q^{-74} +43403 q^{-75} -8397 q^{-76} -55697 q^{-77} -72447 q^{-78} -48391 q^{-79} -21 q^{-80} +47864 q^{-81} +69280 q^{-82} +52070 q^{-83} +9360 q^{-84} -37060 q^{-85} -62721 q^{-86} -53592 q^{-87} -18534 q^{-88} +24542 q^{-89} +52905 q^{-90} +51622 q^{-91} +25665 q^{-92} -11496 q^{-93} -40366 q^{-94} -46024 q^{-95} -29617 q^{-96} -98 q^{-97} +26907 q^{-98} +37285 q^{-99} +29547 q^{-100} +8522 q^{-101} -14275 q^{-102} -26704 q^{-103} -25892 q^{-104} -13074 q^{-105} +4243 q^{-106} +16401 q^{-107} +19830 q^{-108} +13649 q^{-109} +2157 q^{-110} -7724 q^{-111} -12983 q^{-112} -11560 q^{-113} -5076 q^{-114} +1865 q^{-115} +7042 q^{-116} +8070 q^{-117} +5235 q^{-118} +1255 q^{-119} -2733 q^{-120} -4656 q^{-121} -4016 q^{-122} -2201 q^{-123} +339 q^{-124} +2094 q^{-125} +2395 q^{-126} +1953 q^{-127} +613 q^{-128} -611 q^{-129} -1101 q^{-130} -1255 q^{-131} -725 q^{-132} -77 q^{-133} +339 q^{-134} +689 q^{-135} +507 q^{-136} +177 q^{-137} +8 q^{-138} -246 q^{-139} -267 q^{-140} -200 q^{-141} -108 q^{-142} +124 q^{-143} +124 q^{-144} +64 q^{-145} +80 q^{-146} -22 q^{-148} -60 q^{-149} -77 q^{-150} +22 q^{-151} +24 q^{-152} + q^{-153} +21 q^{-154} +3 q^{-155} +14 q^{-156} -7 q^{-157} -31 q^{-158} +6 q^{-159} +8 q^{-160} +3 q^{-162} -5 q^{-163} +6 q^{-164} +3 q^{-165} -10 q^{-166} + q^{-167} +3 q^{-168} + q^{-169} + q^{-170} -3 q^{-171} + q^{-172} + q^{-173} -2 q^{-174} + q^{-175} </math>}} |
|||
coloured_jones_4 = <math>q^{20}+2 q^{19}-6 q^{17}-4 q^{16}-5 q^{15}+14 q^{14}+23 q^{13}-5 q^{12}-17 q^{11}-53 q^{10}+q^9+68 q^8+48 q^7+24 q^6-130 q^5-95 q^4+52 q^3+123 q^2+178 q-130-223 q^{-1} -90 q^{-2} +107 q^{-3} +384 q^{-4} -2 q^{-5} -271 q^{-6} -289 q^{-7} -32 q^{-8} +528 q^{-9} +182 q^{-10} -214 q^{-11} -447 q^{-12} -214 q^{-13} +587 q^{-14} +334 q^{-15} -120 q^{-16} -536 q^{-17} -359 q^{-18} +588 q^{-19} +428 q^{-20} -29 q^{-21} -566 q^{-22} -456 q^{-23} +538 q^{-24} +470 q^{-25} +68 q^{-26} -522 q^{-27} -512 q^{-28} +402 q^{-29} +442 q^{-30} +181 q^{-31} -377 q^{-32} -496 q^{-33} +194 q^{-34} +311 q^{-35} +248 q^{-36} -159 q^{-37} -366 q^{-38} +15 q^{-39} +120 q^{-40} +206 q^{-41} +6 q^{-42} -178 q^{-43} -37 q^{-44} -12 q^{-45} +96 q^{-46} +45 q^{-47} -49 q^{-48} -10 q^{-49} -34 q^{-50} +24 q^{-51} +20 q^{-52} -11 q^{-53} +7 q^{-54} -14 q^{-55} +4 q^{-56} +5 q^{-57} -5 q^{-58} +4 q^{-59} -3 q^{-60} + q^{-61} + q^{-62} -2 q^{-63} + q^{-64} </math> | |
|||
coloured_jones_5 = <math>2 q^{31}+2 q^{29}-3 q^{28}-9 q^{27}-9 q^{26}+7 q^{25}+9 q^{24}+27 q^{23}+25 q^{22}-21 q^{21}-55 q^{20}-51 q^{19}-26 q^{18}+56 q^{17}+140 q^{16}+96 q^{15}-35 q^{14}-160 q^{13}-232 q^{12}-104 q^{11}+175 q^{10}+356 q^9+282 q^8-25 q^7-424 q^6-550 q^5-199 q^4+359 q^3+745 q^2+581 q-154-872 q^{-1} -940 q^{-2} -228 q^{-3} +814 q^{-4} +1319 q^{-5} +682 q^{-6} -632 q^{-7} -1531 q^{-8} -1194 q^{-9} +283 q^{-10} +1676 q^{-11} +1654 q^{-12} +102 q^{-13} -1662 q^{-14} -2039 q^{-15} -535 q^{-16} +1596 q^{-17} +2338 q^{-18} +905 q^{-19} -1466 q^{-20} -2551 q^{-21} -1226 q^{-22} +1334 q^{-23} +2696 q^{-24} +1486 q^{-25} -1216 q^{-26} -2793 q^{-27} -1684 q^{-28} +1094 q^{-29} +2859 q^{-30} +1856 q^{-31} -981 q^{-32} -2880 q^{-33} -2002 q^{-34} +818 q^{-35} +2861 q^{-36} +2148 q^{-37} -628 q^{-38} -2750 q^{-39} -2255 q^{-40} +331 q^{-41} +2556 q^{-42} +2334 q^{-43} -25 q^{-44} -2214 q^{-45} -2292 q^{-46} -356 q^{-47} +1769 q^{-48} +2165 q^{-49} +643 q^{-50} -1232 q^{-51} -1861 q^{-52} -869 q^{-53} +694 q^{-54} +1464 q^{-55} +939 q^{-56} -245 q^{-57} -1005 q^{-58} -845 q^{-59} -84 q^{-60} +572 q^{-61} +667 q^{-62} +237 q^{-63} -253 q^{-64} -421 q^{-65} -261 q^{-66} +36 q^{-67} +232 q^{-68} +201 q^{-69} +45 q^{-70} -85 q^{-71} -123 q^{-72} -67 q^{-73} +25 q^{-74} +53 q^{-75} +44 q^{-76} +14 q^{-77} -26 q^{-78} -27 q^{-79} -3 q^{-80} +2 q^{-81} +6 q^{-82} +14 q^{-83} -3 q^{-84} -8 q^{-85} +2 q^{-86} -3 q^{-88} +4 q^{-89} + q^{-90} -3 q^{-91} + q^{-92} + q^{-93} -2 q^{-94} + q^{-95} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{45}+2 q^{44}-4 q^{41}-6 q^{40}-12 q^{39}-5 q^{38}+14 q^{37}+29 q^{36}+29 q^{35}+18 q^{34}-72 q^{32}-96 q^{31}-76 q^{30}+21 q^{29}+102 q^{28}+178 q^{27}+231 q^{26}+34 q^{25}-179 q^{24}-385 q^{23}-347 q^{22}-209 q^{21}+169 q^{20}+677 q^{19}+703 q^{18}+422 q^{17}-275 q^{16}-782 q^{15}-1239 q^{14}-902 q^{13}+261 q^{12}+1225 q^{11}+1810 q^{10}+1250 q^9+195 q^8-1737 q^7-2716 q^6-1953 q^5-182 q^4+2176 q^3+3361 q^2+3253 q+207-3020 q^{-1} -4581 q^{-2} -3777 q^{-3} -314 q^{-4} +3563 q^{-5} +6512 q^{-6} +4375 q^{-7} -262 q^{-8} -5084 q^{-9} -7360 q^{-10} -4962 q^{-11} +740 q^{-12} +7584 q^{-13} +8406 q^{-14} +4435 q^{-15} -2800 q^{-16} -8844 q^{-17} -9376 q^{-18} -3682 q^{-19} +6205 q^{-20} +10542 q^{-21} +8776 q^{-22} +712 q^{-23} -8271 q^{-24} -12083 q^{-25} -7603 q^{-26} +3880 q^{-27} +10958 q^{-28} +11562 q^{-29} +3677 q^{-30} -6968 q^{-31} -13277 q^{-32} -10104 q^{-33} +1988 q^{-34} +10705 q^{-35} +13019 q^{-36} +5510 q^{-37} -5928 q^{-38} -13775 q^{-39} -11505 q^{-40} +785 q^{-41} +10442 q^{-42} +13856 q^{-43} +6695 q^{-44} -5135 q^{-45} -14031 q^{-46} -12529 q^{-47} -380 q^{-48} +9964 q^{-49} +14436 q^{-50} +8008 q^{-51} -3808 q^{-52} -13692 q^{-53} -13472 q^{-54} -2323 q^{-55} +8368 q^{-56} +14250 q^{-57} +9627 q^{-58} -1143 q^{-59} -11712 q^{-60} -13587 q^{-61} -5011 q^{-62} +4892 q^{-63} +12095 q^{-64} +10480 q^{-65} +2496 q^{-66} -7455 q^{-67} -11493 q^{-68} -6916 q^{-69} +344 q^{-70} +7530 q^{-71} +8974 q^{-72} +5090 q^{-73} -2253 q^{-74} -6999 q^{-75} -6259 q^{-76} -2812 q^{-77} +2375 q^{-78} +5175 q^{-79} +4858 q^{-80} +1144 q^{-81} -2292 q^{-82} -3399 q^{-83} -3010 q^{-84} -657 q^{-85} +1457 q^{-86} +2606 q^{-87} +1610 q^{-88} +188 q^{-89} -760 q^{-90} -1472 q^{-91} -1037 q^{-92} -225 q^{-93} +686 q^{-94} +686 q^{-95} +484 q^{-96} +228 q^{-97} -294 q^{-98} -425 q^{-99} -327 q^{-100} +29 q^{-101} +69 q^{-102} +150 q^{-103} +212 q^{-104} +26 q^{-105} -69 q^{-106} -112 q^{-107} -13 q^{-108} -41 q^{-109} -4 q^{-110} +72 q^{-111} +26 q^{-112} -26 q^{-114} +9 q^{-115} -18 q^{-116} -16 q^{-117} +20 q^{-118} +6 q^{-119} +2 q^{-120} -9 q^{-121} +7 q^{-122} -2 q^{-123} -8 q^{-124} +6 q^{-125} + q^{-126} + q^{-127} -3 q^{-128} + q^{-129} + q^{-130} -2 q^{-131} + q^{-132} </math> | |
|||
coloured_jones_7 = <math>2 q^{61}+2 q^{59}-3 q^{57}-9 q^{56}-7 q^{55}-9 q^{54}-q^{53}+9 q^{52}+29 q^{51}+49 q^{50}+39 q^{49}-3 q^{48}-41 q^{47}-87 q^{46}-129 q^{45}-114 q^{44}-43 q^{43}+133 q^{42}+274 q^{41}+296 q^{40}+257 q^{39}+61 q^{38}-261 q^{37}-571 q^{36}-752 q^{35}-529 q^{34}+10 q^{33}+560 q^{32}+1156 q^{31}+1362 q^{30}+963 q^{29}+38 q^{28}-1319 q^{27}-2215 q^{26}-2263 q^{25}-1510 q^{24}+293 q^{23}+2367 q^{22}+3767 q^{21}+3884 q^{20}+1884 q^{19}-1184 q^{18}-4161 q^{17}-6194 q^{16}-5447 q^{15}-2119 q^{14}+2770 q^{13}+7541 q^{12}+9168 q^{11}+6989 q^{10}+1407 q^9-6299 q^8-11854 q^7-12749 q^6-7937 q^5+1924 q^4+11705 q^3+17512 q^2+15990 q+5788-7978 q^{-1} -19710 q^{-2} -23614 q^{-3} -15701 q^{-4} +238 q^{-5} +18069 q^{-6} +29365 q^{-7} +26209 q^{-8} +10339 q^{-9} -12360 q^{-10} -31518 q^{-11} -35536 q^{-12} -22629 q^{-13} +3139 q^{-14} +30029 q^{-15} +42401 q^{-16} +34538 q^{-17} +8186 q^{-18} -24901 q^{-19} -45971 q^{-20} -45074 q^{-21} -20295 q^{-22} +17490 q^{-23} +46595 q^{-24} +53136 q^{-25} +31541 q^{-26} -8783 q^{-27} -44687 q^{-28} -58709 q^{-29} -41337 q^{-30} +170 q^{-31} +41427 q^{-32} +61984 q^{-33} +49019 q^{-34} +7557 q^{-35} -37537 q^{-36} -63581 q^{-37} -54737 q^{-38} -13910 q^{-39} +33834 q^{-40} +64146 q^{-41} +58744 q^{-42} +18742 q^{-43} -30767 q^{-44} -64164 q^{-45} -61449 q^{-46} -22278 q^{-47} +28420 q^{-48} +64121 q^{-49} +63410 q^{-50} +24779 q^{-51} -26801 q^{-52} -64158 q^{-53} -64968 q^{-54} -26802 q^{-55} +25568 q^{-56} +64412 q^{-57} +66543 q^{-58} +28738 q^{-59} -24334 q^{-60} -64638 q^{-61} -68293 q^{-62} -31197 q^{-63} +22552 q^{-64} +64581 q^{-65} +70226 q^{-66} +34386 q^{-67} -19618 q^{-68} -63492 q^{-69} -72032 q^{-70} -38626 q^{-71} +14979 q^{-72} +60874 q^{-73} +73097 q^{-74} +43403 q^{-75} -8397 q^{-76} -55697 q^{-77} -72447 q^{-78} -48391 q^{-79} -21 q^{-80} +47864 q^{-81} +69280 q^{-82} +52070 q^{-83} +9360 q^{-84} -37060 q^{-85} -62721 q^{-86} -53592 q^{-87} -18534 q^{-88} +24542 q^{-89} +52905 q^{-90} +51622 q^{-91} +25665 q^{-92} -11496 q^{-93} -40366 q^{-94} -46024 q^{-95} -29617 q^{-96} -98 q^{-97} +26907 q^{-98} +37285 q^{-99} +29547 q^{-100} +8522 q^{-101} -14275 q^{-102} -26704 q^{-103} -25892 q^{-104} -13074 q^{-105} +4243 q^{-106} +16401 q^{-107} +19830 q^{-108} +13649 q^{-109} +2157 q^{-110} -7724 q^{-111} -12983 q^{-112} -11560 q^{-113} -5076 q^{-114} +1865 q^{-115} +7042 q^{-116} +8070 q^{-117} +5235 q^{-118} +1255 q^{-119} -2733 q^{-120} -4656 q^{-121} -4016 q^{-122} -2201 q^{-123} +339 q^{-124} +2094 q^{-125} +2395 q^{-126} +1953 q^{-127} +613 q^{-128} -611 q^{-129} -1101 q^{-130} -1255 q^{-131} -725 q^{-132} -77 q^{-133} +339 q^{-134} +689 q^{-135} +507 q^{-136} +177 q^{-137} +8 q^{-138} -246 q^{-139} -267 q^{-140} -200 q^{-141} -108 q^{-142} +124 q^{-143} +124 q^{-144} +64 q^{-145} +80 q^{-146} -22 q^{-148} -60 q^{-149} -77 q^{-150} +22 q^{-151} +24 q^{-152} + q^{-153} +21 q^{-154} +3 q^{-155} +14 q^{-156} -7 q^{-157} -31 q^{-158} +6 q^{-159} +8 q^{-160} +3 q^{-162} -5 q^{-163} +6 q^{-164} +3 q^{-165} -10 q^{-166} + q^{-167} +3 q^{-168} + q^{-169} + q^{-170} -3 q^{-171} + q^{-172} + q^{-173} -2 q^{-174} + q^{-175} </math> | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 162]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[16, 10, 17, 9], X[10, 3, 11, 4], X[2, 15, 3, 16], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 162]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 10, 17, 9], X[10, 3, 11, 4], X[2, 15, 3, 16], |
|||
X[14, 5, 15, 6], X[18, 8, 19, 7], X[4, 11, 5, 12], X[8, 18, 9, 17], |
X[14, 5, 15, 6], X[18, 8, 19, 7], X[4, 11, 5, 12], X[8, 18, 9, 17], |
||
X[13, 20, 14, 1], X[19, 12, 20, 13]]</nowiki></ |
X[13, 20, 14, 1], X[19, 12, 20, 13]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 162]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 162]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, 10, -9, -5, 4, -2, 8, |
|||
-6, -10, 9]</nowiki></ |
-6, -10, 9]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 162]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 162]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 162]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 18, 16, 4, -20, 2, 8, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 162]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -2, 1, 1, -2, -2, -1, 3, -2, 3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 162]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_162_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 162]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 162]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 162]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 162]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_162_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 162]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 162]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 9 2 |
|||
-11 - -- + - + 9 t - 3 t |
-11 - -- + - + 9 t - 3 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 162]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 162]][z]</nowiki></code></td></tr> |
|||
1 - 3 z - 3 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 - 3 z - 3 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 162]], KnotSignature[Knot[10, 162]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{35, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 2 4 6 6 6 5 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 20], Knot[10, 162], Knot[11, NonAlternating, 117]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 162]], KnotSignature[Knot[10, 162]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{35, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 162]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 2 4 6 6 6 5 |
|||
-3 + q - -- + -- - -- + -- - -- + - + 2 q |
-3 + q - -- + -- - -- + -- - -- + - + 2 q |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></ |
q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 162]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 162]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 162]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -22 2 -14 -10 2 2 2 2 4 |
|||
1 + q + --- - q - q - -- - -- + -- + q + 2 q |
1 + q + --- - q - q - -- - -- + -- + q + 2 q |
||
16 8 4 2 |
16 8 4 2 |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 162]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 162]][a, z]</nowiki></code></td></tr> |
|||
3 - 3 a + a + 2 z - 5 a z - a z + a z - 2 a z - a z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 2 2 2 4 2 6 2 2 4 4 4 |
|||
3 - 3 a + a + 2 z - 5 a z - a z + a z - 2 a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 162]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 6 3 5 2 2 2 4 2 |
|||
3 + 3 a - a - 2 a z - 7 a z - 5 a z - 7 z - 9 a z + 5 a z + |
3 + 3 a - a - 2 a z - 7 a z - 5 a z - 7 z - 9 a z + 5 a z + |
||
Line 159: | Line 200: | ||
2 6 4 6 6 6 7 3 7 5 7 2 8 4 8 |
2 6 4 6 6 6 7 3 7 5 7 2 8 4 8 |
||
2 a z + a z + 3 a z + a z + 4 a z + 3 a z + a z + a z</nowiki></ |
2 a z + a z + 3 a z + a z + 4 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 162]], Vassiliev[3][Knot[10, 162]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 162]], Vassiliev[3][Knot[10, 162]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 162]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 162]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 4 1 1 1 3 1 3 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
3 q 15 6 13 5 11 5 11 4 9 4 9 3 7 3 |
||
Line 173: | Line 222: | ||
----- + ----- + ---- + ---- + --- + q t + 2 q t |
----- + ----- + ---- + ---- + --- + q t + 2 q t |
||
7 2 5 2 5 3 q |
7 2 5 2 5 3 q |
||
q t q t q t q t</nowiki></ |
q t q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 162], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 162], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -20 2 -18 4 9 2 15 20 3 32 |
|||
-14 + q - --- + q + --- - --- + --- + --- - --- - --- + --- - |
-14 + q - --- + q + --- - --- + --- + --- - --- - --- + --- - |
||
19 17 16 15 14 13 12 11 |
19 17 16 15 14 13 12 11 |
||
Line 187: | Line 240: | ||
4 5 |
4 5 |
||
2 q + q</nowiki></ |
2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:01, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 162's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Warning. In 1973 K. Perko noticed that the knots that were later labeled 10161 and 10162 in Rolfsen's tables (which were published in 1976 and were based on earlier tables by Little (1900) and Conway (1970)) are in fact the same. In our table we removed Rolfsen's 10162 and renumbered the subsequent knots, so that our 10 crossings total is 165, one less than Rolfsen's 166. Read more: [1] [2] [3] [4] [5].
Knot presentations
Planar diagram presentation | X6271 X16,10,17,9 X10,3,11,4 X2,15,3,16 X14,5,15,6 X18,8,19,7 X4,11,5,12 X8,18,9,17 X13,20,14,1 X19,12,20,13 |
Gauss code | 1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, 10, -9, -5, 4, -2, 8, -6, -10, 9 |
Dowker-Thistlethwaite code | 6 10 14 18 16 4 -20 2 8 -12 |
Conway Notation | [-30:-20:-20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{11, 3}, {2, 7}, {4, 8}, {3, 5}, {7, 10}, {6, 4}, {5, 9}, {1, 6}, {8, 11}, {9, 2}, {10, 1}] |
[edit Notes on presentations of 10 162]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 162"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,10,17,9 X10,3,11,4 X2,15,3,16 X14,5,15,6 X18,8,19,7 X4,11,5,12 X8,18,9,17 X13,20,14,1 X19,12,20,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -7, 5, -1, 6, -8, 2, -3, 7, 10, -9, -5, 4, -2, 8, -6, -10, 9 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 18 16 4 -20 2 8 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-30:-20:-20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 3}, {2, 7}, {4, 8}, {3, 5}, {7, 10}, {6, 4}, {5, 9}, {1, 6}, {8, 11}, {9, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 162"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 35, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_20, K11n117,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 162"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_20, K11n117,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (-3, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 162. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|