T(4,3): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- Script generated - do not edit! -->
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit!

<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- $Failed $Failedmath.uwo.c$Failedtriev$Faileddge] at [h$Failedn.matuwo . ca
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. -->
--------
<!-- -->
c$Faidml Knotil$Failed[http://www.mat$FailedsKnots/3.2.hl(2s pageat o theginal [http://www.math.toronto.edu/~drorbn/KAtlas/inxtot Atl$Failedt presentations===
<!-- -->

<!-- WARNING! WARNING! WARNING!
{|
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit!
|'''[[Planar Diagrams|Planar dir entatio$Failede="padding-left: 1em;" | X<sub>3146</sub> X<b > 152/sub> X<sub>5362</sub>
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page.
|-
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately.
|'''[[Gauss Codes|Gauss code]]'''
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. -->
|style=$Faile$Failed1, 2, -3, 1}
<!-- -->
|-
{{Torus Knot Page|
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistl$Failedepa$Faedial Invariants|name=T(3,2)}}
m = 4 |

n = 3 |
===[[Finite Type (Vassiliev) Invaant$Failed===$Failed'''
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-3,5,6,-8,-1,3,4,-6,-7,1,2,-4,-5,7,8,-2/goTop.html |
|style="padding-left: 1em;" | {0, 1})
braid_table = <table cellspacing=0 cellpadding=0 border=0>
|}
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr>
[[Khovanov Homolo$Failedefficien$Failed> are show$Failedj</math>, alternation over <math>r</math>). The squares with <f$FailedYel$Failedse on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>2 is the signature of T(3,2). Nonzero entries off the $Failed<font class=HLRed$Failed
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>

</table> |
<center><table border=1>
same_alexander = [[8_19]], |
same_jones = [[8_19]], |
khovanov_table = <table border=1>
<tr align=center>
<tr align=center>
<td width=25.%><table cellpadding=0 cellspacing=0>
<td width=20.%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbs$Failed;</td><td>&nbsp;\&nbsp;</td><td>&n$Failed>j</td><td>&nbsp;</td$Failed/tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=12.5%>0</td ><td width=12.5%>1</td ><td width=12.5%>2</td ><td width=12.5%>3</td ><td wid$Failednter><td>9</td><td>&nbsp;</td><td>&nbsp$Failedtd bgcolor=yellow>1</$Faileded<td>&nbsp;</td><t$Failedo$Failedo$Failed>$Failed>$Failedl$Failedl$Failedd$Failed>$Failed&$Failedd$Failed>$Failed>$Fa$Failed style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td width=10.%>0</td ><td width=10.%>1</td ><td width=10.%>2</td ><td width=10.%>3</td ><td width=10.%>4</td ><td width=10.%>5</td ><td width=20.%>&chi;</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
</tr>$Failed="border: 0px; pa$Failedy$Failed9$Failedd$Failed<$Failed;$Failed=$Failed $Failedn$Failedi$Failedn$Failedp$Failed>$Failedd$Failedo$Failed/td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[3, 2]]</nowiki></pre></td$Failedlor: blue; border$FailedO$Failedp$Failed $Failedo$Failed,$Failed,$Faileds$Failedi$Failed<$Failedo$Failede$Failedk$Failedi$Failedp$Failedde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[3, 2]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1}]</nowiki></pre></td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=red>1</td><td>&nbsp;</td><td>1</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[3, 2]][t]</nowiki></pre></td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1
<tr align=center><td>7</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
-1 + - + t
<tr align=center><td>5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
t</nowiki></pre></td></tr>
</table> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[3, 2]][z]</nowiki></pre></td></tr>
coloured_jones_2 = <math>q^{23}-q^{22}+q^{20}-q^{19}-q^{16}-q^{13}+q^{12}+q^9+q^6</math> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
coloured_jones_3 = |
1 + z</nowiki></pre></td></tr>
coloured_jones_4 = |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
coloured_jones_5 = |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>
coloured_jones_6 = |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[3, 2]], KnotSignature[TorusKnot[3, 2]]}</nowiki></pre></td></tr>
coloured_jones_7 = |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 2}</nowiki></pre></td></tr>
computer_talk =
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[3, 2]][q]</nowiki></pre></td></tr>
<table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 4
<tr valign=top>
q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[3, 1]}</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
Include[ColouredJonesM.mhtml]
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[3, 2]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 12 14
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[4, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8</nowiki></pre></td></tr>
q + q + 2 q + q - q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[3, 2]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>TubePlot[TorusKnot[4, 3]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:T(4,3).jpg]]</td></tr><tr valign=top><td><tt><font color=blue>Out[3]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[4, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[5, 11, 6, 10], X[16, 12, 1, 11], X[1, 7, 2, 6], X[12, 8, 13, 7],
-4 2 z z z z
-a - -- + -- + -- + -- + --
2 5 3 4 2
X[13, 3, 14, 2], X[8, 4, 9, 3], X[9, 15, 10, 14], X[4, 16, 5, 15]]</nowiki></pre></td></tr>
a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[4, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[3, 2]], Vassiliev[3][TorusKnot[3, 2]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[4, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[3, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 2, 1, 2, 1, 2, 1, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[4, 3]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 -2 2 3
q + q + q t + q t</nowiki></pre></td></tr>
1 + t - t - t + t</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[4, 3]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 + 5 z + 5 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 19]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[4, 3]], KnotSignature[TorusKnot[4, 3]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 6}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[4, 3]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 8
q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[8, 19]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[4, 3]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 10 12 14 16 18 22 24 26 28 32
q + q + 2 q + 2 q + 2 q - q - 2 q - 2 q - q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[4, 3]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 3 3 4
-10 5 5 5 z 5 z 10 z 10 z 5 z 5 z 6 z
-a - -- - -- + --- + --- + ----- + ----- - ---- - ---- - ---- -
8 6 9 7 8 6 9 7 8
a a a a a a a a a
4 5 5 6 6
6 z z z z z
---- + -- + -- + -- + --
6 9 7 8 6
a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[4, 3]], Vassiliev[3][TorusKnot[4, 3]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[4, 3]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 7 9 2 13 3 11 4 13 4 15 5 17 5
q + q + q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr>
</table> }}

Latest revision as of 10:37, 31 August 2005

T(7,2).jpg

T(7,2)

T(9,2).jpg

T(9,2)

T(4,3).jpg See other torus knots

Visit T(4,3) at Knotilus!

Edit T(4,3) Quick Notes

See also 8_19.

Edit T(4,3) Further Notes and Views


Knot presentations

Planar diagram presentation X5,11,6,10 X16,12,1,11 X1726 X12,8,13,7 X13,3,14,2 X8493 X9,15,10,14 X4,16,5,15
Gauss code -3, 5, 6, -8, -1, 3, 4, -6, -7, 1, 2, -4, -5, 7, 8, -2
Dowker-Thistlethwaite code 6 -8 10 -12 14 -16 2 -4
Braid presentation
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 3, 6 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(4,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(4,3)/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {8_19,}

Same Jones Polynomial (up to mirroring, ): {8_19,}

Vassiliev invariants

V2 and V3: (5, 10)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(4,3)/V 2,1 Data:T(4,3)/V 3,1 Data:T(4,3)/V 4,1 Data:T(4,3)/V 4,2 Data:T(4,3)/V 4,3 Data:T(4,3)/V 5,1 Data:T(4,3)/V 5,2 Data:T(4,3)/V 5,3 Data:T(4,3)/V 5,4 Data:T(4,3)/V 6,1 Data:T(4,3)/V 6,2 Data:T(4,3)/V 6,3 Data:T(4,3)/V 6,4 Data:T(4,3)/V 6,5 Data:T(4,3)/V 6,6 Data:T(4,3)/V 6,7 Data:T(4,3)/V 6,8 Data:T(4,3)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 6 is the signature of T(4,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
012345χ
17     1-1
15     1-1
13   11 0
11    1 1
9  1   1
71     1
51     1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Torus Knot Page master template (intermediate).

See/edit the Torus Knot_Splice_Base (expert).

Back to the top.

T(7,2).jpg

T(7,2)

T(9,2).jpg

T(9,2)