T(15,2): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- Script generated - do not edit! --> |
|||
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- $Failedailedn.matuwo . ca |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. --> |
|||
-------- |
|||
<!-- --> |
|||
c$Faidml K$FaidaFaedsKiledaidtt$edaidts$Faeds$Failedl$Failedail$Failedd$Fai$FailedFailed (Dowk-Thistlewaite) Codes|DowrhtFaileda$FaediaInvariants|name=T(3,2$Failed=$Failedinite $Failediev)nvaanFl=$iled''$Faileddding-left: 1em;"$Fail$Failed}$FailedhovHomo$Failedfi oven$Failed> are shoFaile</math>, over ternation < math</math>). e sques with <f$FailedYe2</math>, where <math>s=</th > 2 the signHLRed$Failedrder=1> |
|||
< |
<!-- --> |
||
<!-- WARNING! WARNING! WARNING! |
|||
<td wid$Failedled$Fai$Failed$Failed/tr> |
|||
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit! |
|||
</tab$Failed<td wi$F$$Failed;</td><td> $Failedtd bgcolor=yellow>1</$Fl$Failed$Failed > $Failed > $Faailed style="color: red; borpding:0d;$Failed=$Failed $Failedn$Failedi$Failedn$Failedp $Failedd$Fae$Failepadding:0"><nowiki>PD[TorusKnot[3, 2]]</now$Failededp$Failed $Failedo$F$$Failedleds$Failedi$Failed<$Failedo$ilede$Failedk$Failedi$Failedp$Failde[-2, 3, -1, 2, -3, 1]</nowiki></pre></td></$Failedolor: bl$$Failed/$Failedrd$Failedo$Faed > $Failea$FailedFailedd$Failed ($Failedn0rpadding:0)Failed3$Failedr$Failed: $Failed </now$Failed=borde $Failed - t |
|||
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page. |
|||
-($Failediled < $Fai |
|||
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately. |
|||
$Failed$Failedailedd$Failed>$Failede$Failed $Failede$Failed 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><t$Failedadding: 0$Faedlede$Failedm$Faid&$Failedr$Failed<$Faed > $Fail<$FailedK$Failedt$Failede$Failed $Failednowiki>Out[9]= </nowiki></pre></td><td><$FailedFailedrpaddin $FailedFailed:$ilede$Failedt$Failedd$Failed>$Failedd$Failedt$Failedcpadding0$Failed"8ding: 0em"><nowiki>Select[AllK$Failed1/q) === Jo2[#1] ($Failedr$Failedp$Failed:$Fai)do$Failed>$Failedl$Failedn$Failedl$Failede$Failede$Failedr$Failedd$Failedl$Failed1$Failedi></pre></td><td><pre style="color: black; border: 0px; paddin$Failed2 14 |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. --> |
|||
q + q +$Failed<$Failedl$Failed:d$Failedr$Failed $Failed,$Failed>$Failedo$Failedl$Failed -8 z $Failed- 2 |
|||
<!-- --> |
|||
a $Failed></tr> |
|||
{{Torus Knot Page| |
|||
<tr valign=top><td><pre style="color: blue; $Failed]:=</nowiki></pre$Failedr$Failedn$Failed[$Failedi$Failed>$Failed>$FailedO$Failedp$Failed:$Failedc$Failed>$Failedr$Failedw$Failed<$Failed="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 2 9 3 |
|||
m = 15 | |
|||
q + q + q t + q t</nowiki></pre></td></tr> |
|||
n = 2 | |
|||
</table></math> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-8,9,-10,11,-12,13,-14,15,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,1,-2,3,-4,5,-6,7/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=10.%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=5.%>0</td ><td width=5.%>1</td ><td width=5.%>2</td ><td width=5.%>3</td ><td width=5.%>4</td ><td width=5.%>5</td ><td width=5.%>6</td ><td width=5.%>7</td ><td width=5.%>8</td ><td width=5.%>9</td ><td width=5.%>10</td ><td width=5.%>11</td ><td width=5.%>12</td ><td width=5.%>13</td ><td width=5.%>14</td ><td width=5.%>15</td ><td width=10.%>χ</td></tr> |
|||
<tr align=center><td>45</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>43</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
|||
<tr align=center><td>41</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>39</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>37</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>35</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>33</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>31</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>29</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>27</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>25</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>23</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>21</td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>19</td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>15</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{59}-q^{58}+q^{56}-q^{55}+q^{53}-q^{52}+q^{50}-q^{49}+q^{47}-q^{46}-q^{45}+q^{44}-q^{43}+q^{41}-q^{40}+q^{38}-q^{37}+q^{35}-q^{34}+q^{32}-q^{31}+q^{29}-q^{28}+q^{26}-q^{25}+q^{23}-q^{22}+q^{20}-q^{19}+q^{17}+q^{14}</math> | |
|||
coloured_jones_3 = | |
|||
coloured_jones_4 = | |
|||
coloured_jones_5 = | |
|||
coloured_jones_6 = | |
|||
coloured_jones_7 = | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>15</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>TubePlot[TorusKnot[15, 2]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:T(15,2).jpg]]</td></tr><tr valign=top><td><tt><font color=blue>Out[3]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[9, 25, 10, 24], X[25, 11, 26, 10], X[11, 27, 12, 26], |
|||
X[27, 13, 28, 12], X[13, 29, 14, 28], X[29, 15, 30, 14], |
|||
X[15, 1, 16, 30], X[1, 17, 2, 16], X[17, 3, 18, 2], X[3, 19, 4, 18], |
|||
X[19, 5, 20, 4], X[5, 21, 6, 20], X[21, 7, 22, 6], X[7, 23, 8, 22], |
|||
X[23, 9, 24, 8]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, |
|||
-9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[15, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[15, 2]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -6 -5 -4 -3 -2 1 2 3 4 5 |
|||
-1 + t - t + t - t + t - t + - + t - t + t - t + t - |
|||
t |
|||
6 7 |
|||
t + t</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[15, 2]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 |
|||
1 + 28 z + 126 z + 210 z + 165 z + 66 z + 13 z + z</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[15, 2]], KnotSignature[TorusKnot[15, 2]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{15, 14}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[15, 2]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7 9 10 11 12 13 14 15 16 17 18 19 |
|||
q + q - q + q - q + q - q + q - q + q - q + q - |
|||
20 21 22 |
|||
q + q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[15, 2]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 26 28 30 32 34 58 60 62 |
|||
q + q + 2 q + q + q - q - q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[15, 2]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-7 8 z z z z z z z 7 z z |
|||
--- - --- + --- - --- + --- - --- + --- - --- + --- + --- + --- - |
|||
16 14 29 27 25 23 21 19 17 15 28 |
|||
a a a a a a a a a a a |
|||
2 2 2 2 2 2 2 3 3 |
|||
2 z 3 z 4 z 5 z 6 z 63 z 84 z z 3 z |
|||
---- + ---- - ---- + ---- - ---- + ----- + ----- + --- - ---- + |
|||
26 24 22 20 18 16 14 27 25 |
|||
a a a a a a a a a |
|||
3 3 3 3 3 4 4 4 4 |
|||
6 z 10 z 15 z 21 z 56 z z 4 z 10 z 20 z |
|||
---- - ----- + ----- - ----- - ----- + --- - ---- + ----- - ----- + |
|||
23 21 19 17 15 26 24 22 20 |
|||
a a a a a a a a a |
|||
4 4 4 5 5 5 5 5 |
|||
35 z 182 z 252 z z 5 z 15 z 35 z 70 z |
|||
----- - ------ - ------ + --- - ---- + ----- - ----- + ----- + |
|||
18 16 14 25 23 21 19 17 |
|||
a a a a a a a a |
|||
5 6 6 6 6 6 6 7 7 |
|||
126 z z 6 z 21 z 56 z 246 z 330 z z 7 z |
|||
------ + --- - ---- + ----- - ----- + ------ + ------ + --- - ---- + |
|||
15 24 22 20 18 16 14 23 21 |
|||
a a a a a a a a a |
|||
7 7 7 8 8 8 8 8 9 |
|||
28 z 84 z 120 z z 8 z 36 z 175 z 220 z z |
|||
----- - ----- - ------ + --- - ---- + ----- - ------ - ------ + --- - |
|||
19 17 15 22 20 18 16 14 21 |
|||
a a a a a a a a a |
|||
9 9 9 10 10 10 10 11 |
|||
9 z 45 z 55 z z 10 z 67 z 78 z z |
|||
---- + ----- + ----- + --- - ------ + ------ + ------ + --- - |
|||
19 17 15 20 18 16 14 19 |
|||
a a a a a a a a |
|||
11 11 12 12 12 13 13 14 14 |
|||
11 z 12 z z 13 z 14 z z z z z |
|||
------ - ------ + --- - ------ - ------ + --- + --- + --- + --- |
|||
17 15 18 16 14 17 15 16 14 |
|||
a a a a a a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[15, 2]], Vassiliev[3][TorusKnot[15, 2]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{28, 140}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[15, 2]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 13 15 17 2 21 3 21 4 25 5 25 6 29 7 |
|||
q + q + q t + q t + q t + q t + q t + q t + |
|||
29 8 33 9 33 10 37 11 37 12 41 13 41 14 |
|||
q t + q t + q t + q t + q t + q t + q t + |
|||
45 15 |
|||
q t</nowiki></pre></td></tr> |
|||
</table> }} |
Latest revision as of 10:37, 31 August 2005
|
|
See other torus knots | |
Edit T(15,2) Quick Notes
|
Edit T(15,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X9,25,10,24 X25,11,26,10 X11,27,12,26 X27,13,28,12 X13,29,14,28 X29,15,30,14 X15,1,16,30 X1,17,2,16 X17,3,18,2 X3,19,4,18 X19,5,20,4 X5,21,6,20 X21,7,22,6 X7,23,8,22 X23,9,24,8 |
Gauss code | -8, 9, -10, 11, -12, 13, -14, 15, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 1, -2, 3, -4, 5, -6, 7 |
Dowker-Thistlethwaite code | 16 18 20 22 24 26 28 30 2 4 6 8 10 12 14 |
Braid presentation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(15,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 15, 14 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["T(15,2)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (28, 140) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 14 is the signature of T(15,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|