Torus Knot Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
(44 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- <* (* -->{{Splice Base Notice}}<!-- *) *> --> |
|||
<! Script generated - do not edit! > |
|||
<!-- <* (* --><!-- You can ignore this warning; it's for people trying to edit individual knot pages--><!-- *) *> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<html> |
|||
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page. |
|||
<head> |
|||
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately. |
|||
<link rel="stylesheet" type="text/css" href="/~drorbn/global.css"> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. --> |
|||
<title>Dror Bar-Natan: The Knot Atlas: Torus Knots: T(<*m*>,<*n*>)</title> |
|||
<!-- <*{m,n}=List@@K;*> --> |
|||
</head> |
|||
{{Torus Knot Page| |
|||
m = <*m*> | |
|||
</head> |
|||
n = <*n*> | |
|||
KnotilusURL = <*KnotilusURL[K]*> | |
|||
<body bgcolor=pink><a name="top"></a> |
|||
braid_table = <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", |
|||
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> | |
|||
<table valign=center width=100% border=0><tr> |
|||
same_alexander = <* alex = Alexander[K][t]; |
|||
<td align=left> |
|||
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; |
|||
<a href="/~drorbn/Copyleft/index.html">©</a> | |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
<a href="/~drorbn/">Dror Bar-Natan</a>: |
|||
*> | |
|||
<a href="../index.html">The Knot Atlas</a>: |
|||
same_jones = <* J = Jones[K][q]; |
|||
<a href="index.html">Torus Knots</a>: |
|||
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&], K]; |
|||
</td> |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
<td align=right> |
|||
*> | |
|||
khovanov_table = <*TabularKh[Kh[K][q, t], KnotSignature[K]+{1,-1}]*> | |
|||
<td align=center> |
|||
coloured_jones_2 = <*ColouredJones[K, 2][q]*> | |
|||
<a href="<*prevm*>.<*prevn*>.html"><img border=0 |
|||
coloured_jones_3 = <*ColouredJones[K, 3][q]*> | |
|||
width=120 height=120 src="<*prevm*>.<*prevn*>_120.jpg" |
|||
coloured_jones_4 = <*ColouredJones[K, 4][q]*> | |
|||
alt="T(<*prevm*>,<*prevn*>)"><br>T(<*prevm*>,<*prevn*>)</a> |
|||
coloured_jones_5 = <*ColouredJones[K, 5][q]*> | |
|||
</td><td align=center> |
|||
coloured_jones_6 = <*ColouredJones[K, 6][q]*> | |
|||
<a href="<*nextm*>.<*nextn*>.html"><img border=0 |
|||
coloured_jones_7 = <*ColouredJones[K, 7][q]*> |
|||
width=120 height=120 src="<*nextm*>.<*nextn*>_120.jpg" |
|||
}} |
|||
alt="T(<*nextm*>,<*nextn*>)"><br>T(<*nextm*>,<*nextn*>)</a> |
|||
</td> |
|||
</tr></table> |
|||
</td> |
|||
</tr></table> |
|||
<table border=0><tr align=center> |
|||
<td> |
|||
<a href="../Manual/TubePlot.html"><img src="<*m*>.<*n*>_240.jpg" |
|||
border=0 alt="T(<*m*>,<*n*>)"><br><font size=-2>TubePlot</font></a> |
|||
</td> |
|||
<td> |
|||
<h1> The <*m(n-1)*>-Crossing Torus Knot T(<*m*>,<*n*>)</h1> |
|||
<*Include["$knotaka.html"]*> |
|||
<p>Visit <a class=external |
|||
href="<*KnotilusURL[K=TorusKnot[m, n]]*>">T(<*m*>,<*n*>)'s |
|||
page</a> at <a class=external |
|||
href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno |
|||
tilus</a>! |
|||
<p><a href="../Manual/Acknowledgement.html">Acknowledgement</a> |
|||
</td> |
|||
</tr></table> |
|||
<*Include["$knotviews.html", "views"]*> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/PD.html">PD Presentation</a>: </td> |
|||
<td><em><* PD[K] *></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/GaussCode.html">Gauss Code</a>: </td> |
|||
<td><em><*List @@ GaussCode[K]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/BR.html">Braid Representative</a>: </td> |
|||
<td> </td> |
|||
<td> |
|||
<* BraidPlot[CollapseBraid[BR[K]], Mode -> "HTML"] *> |
|||
</td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[alex = Alexander[K][t], t]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: </td> |
|||
<td><em><*PolyPrint[Conway[K][z], z]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td>Other knots with the same <a |
|||
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>: |
|||
</td> |
|||
<td><em>{<* |
|||
others = |
|||
DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], |
|||
Knot[n,Type,k]]; |
|||
If[others === {}, "", |
|||
StringJoin[(ToString[#, FormatType -> HTMLForm]<>", ")& /@ others] |
|||
] |
|||
*>...}</em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td> |
|||
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>: |
|||
</td> |
|||
<td><em><*{KnotDet[K], s=KnotSignature[K]}*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Jones.html">Jones Polynomial</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[J = Jones[K][q], q]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td>Other knots (up to mirrors) with the same <a |
|||
href="../Manual/Jones.html">Jones Polynomial</a>: |
|||
</td> |
|||
<td><em>{<* |
|||
others = |
|||
DeleteCases[Select[AllKnots[], |
|||
(J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])& |
|||
], Knot[n,Type,k]]; |
|||
If[others === {}, "", |
|||
StringJoin[(ToString[#, FormatType -> HTMLForm]<>", ")& /@ others] |
|||
] |
|||
*>...}</em></td> |
|||
</tr></table> |
|||
<* If[Crossings[K]<=18, Include["ColouredJones.mhtml"] ,""] *> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[A2Invariant[K][q], q]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>: |
|||
</td> |
|||
<td><em><*PolyPrint[Kauffman[K][a, z], {a, z}]*></em></td> |
|||
</tr></table> |
|||
<p><table><tr align=left valign=top> |
|||
<td><a href="../Manual/Vassiliev.html">V<sub>2</sub> and |
|||
V<sub>3</sub>, the type 2 and 3 Vassiliev invariants</a>: </td> |
|||
<td><em><* {Vassiliev[2][K], Vassiliev[3][K]} *></em></td> |
|||
</tr></table> |
|||
<p><a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>. |
|||
The coefficients of the monomials <em>t<sup>r</sup>q<sup>j</sup></em> |
|||
are shown, along with their alternating sums χ (fixed <em>j</em>, |
|||
alternation over <em>r</em>). |
|||
The squares with <font class=HLYellow>yellow</font> highlighting |
|||
are those on the "critical diagonals", where <em>j-2r=s+1</em> or |
|||
<em>j-2r=s+1</em>, where <em>s=<*s*></em> is the signature of |
|||
T(<*m*>,<*n*>). Nonzero entries off the critical diagonals (if |
|||
any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<br><center> |
|||
<*TabularKh[Kh[K][q, t], s+{1,-1}]*> |
|||
</center> |
|||
<* ComputerTalkHeader *> |
|||
<*GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n]*> |
|||
<*InOut["Crossings[``]", K]*> |
|||
<*InOut["PD[``]", K]*> |
|||
<*InOut["GaussCode[``]", K]*> |
|||
<*InOut["BR[``]", K]*> |
|||
<*InOut["alex = Alexander[``][t]", K]*> |
|||
<*InOut["Conway[``][z]", K]*> |
|||
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
|||
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> |
|||
<*InOut["J=Jones[``][q]", K]*> |
|||
<*InOut[ |
|||
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]" |
|||
]*> |
|||
<* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> |
|||
<*InOut["A2Invariant[``][q]", K]*> |
|||
<*InOut["Kauffman[``][a, z]", K]*> |
|||
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> |
|||
<*InOut["Kh[``][q, t]", K]*> |
|||
</table> |
|||
<p><hr><p> |
|||
<table valign=center width=100% border=0><tr> |
|||
<td align=left> |
|||
<a href="/~drorbn/">Dror Bar-Natan</a>: |
|||
<a href="../index.html">The Knot Atlas</a>: |
|||
<a href="index.html">Torus Knots</a>: |
|||
<a href="#top">The Torus Knot T(<*m*>,<*n*>)</a> |
|||
</td> |
|||
<td align=right> |
|||
<table border=0><tr> |
|||
<td align=center> |
|||
<a href="<*prevm*>.<*prevn*>.html"><img border=0 |
|||
width=120 height=120 src="<*prevm*>.<*prevn*>_120.jpg" |
|||
alt="T(<*prevm*>,<*prevn*>)"><br>T(<*prevm*>,<*prevn*>)</a> |
|||
</td><td align=center> |
|||
<a href="<*nextm*>.<*nextn*>.html"><img border=0 |
|||
width=120 height=120 src="<*nextm*>.<*nextn*>_120.jpg" |
|||
alt="T(<*nextm*>,<*nextn*>)"><br>T(<*nextm*>,<*nextn*>)</a> |
|||
</td> |
|||
</tr></table> |
|||
</td> |
|||
</tr></table> |
|||
</body> |
|||
</html> |
Latest revision as of 16:09, 18 September 2005
[[Image:Data:Torus Knot Splice Base/Previous Knot.jpg|80px|link=Data:Torus Knot Splice Base/Previous Knot]] |
[[Image:Data:Torus Knot Splice Base/Next Knot.jpg|80px|link=Data:Torus Knot Splice Base/Next Knot]] |
File:Torus Knot Splice Base.jpg | See other torus knots
Visit Torus Knot Splice Base at Knotilus! |
Edit Torus Knot Splice Base Quick Notes
|
Edit Torus Knot Splice Base Further Notes and Views
Knot presentations
Planar diagram presentation | Data:Torus Knot Splice Base/PD Presentation |
Gauss code | Data:Torus Knot Splice Base/Gauss Code |
Dowker-Thistlethwaite code | Data:Torus Knot Splice Base/DT Code |
Braid presentation | <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif",
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Torus Knot Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Torus Knot Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Torus Knot Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Torus Knot Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Torus Knot Splice Base/Determinant, Data:Torus Knot Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Torus Knot Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Torus Knot Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Torus Knot Splice Base/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>}
Same Jones Polynomial (up to mirroring, ): {<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["Torus Knot Splice Base"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Data:Torus Knot Splice Base/Alexander Polynomial, Data:Torus Knot Splice Base/Jones Polynomial } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]} |
Vassiliev invariants
V2 and V3: | (Data:Torus Knot Splice Base/V 2, Data:Torus Knot Splice Base/V 3) |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Torus Knot Splice Base/Signature is the signature of Torus Knot Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:Torus Knot Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Torus Knot Splice Base/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|