Threading a link by a polynomial: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
Sam.panitch (talk | contribs) No edit summary Tag: Manual revert |
Sam.panitch (talk | contribs) No edit summary Tag: Manual revert |
||
(8 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
<code>CableLink[link,poly,strandList,vars]</code>, whose code is available [[cableLink.m|here]], computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li. |
<code>CableLink[link,poly,strandList,vars]</code>, whose code is available [[cableLink.m|here]], computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li. |
||
As an example, we can verify some formulas from |
As an example, we can verify some formulas from {{ref|Masbaum}}, after importing KnotTheory` and the CableLink code: |
||
<!--$$Import["http://katlas.org/w/index.php?title=CableLink.m&action=raw"];$$--> |
|||
<!--END--> |
|||
<!--$$hopfLink=PD[X[3,1,4,2],X[2,4,1,3]]; // |
<!--$$hopfLink=PD[X[3,1,4,2],X[2,4,1,3]]; // |
||
bracket[n_]:=a^n-a^(-n); // |
bracket[n_]:=a^n-a^(-n); // |
||
bracketFact[n_]:=Product[bracket[i],{i,1,n}]; // |
bracketFact[n_]:=Product[bracket[i],{i,1,n}]; // |
||
lambda[n_] := A^(2*n + 2) + A^(-2*n - 2); // |
|||
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}]; // |
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}]; // |
||
cheb[0, z_] = 1; |
cheb[0, z_] = 1; |
||
Line 11: | Line 11: | ||
cheb[n_, z_] := cheb[n, z] = z*cheb[n - 1, z] - cheb[n - 2, z]; |
cheb[n_, z_] := cheb[n, z] = z*cheb[n - 1, z] - cheb[n - 2, z]; |
||
$$--> |
$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{In| |
|||
n = 3 | |
|||
in = <nowiki>hopfLink=PD[X[3,1,4,2],X[2,4,1,3]]; |
|||
bracket[n_]:=a^n-a^(-n); |
|||
bracketFact[n_]:=Product[bracket[i],{i,1,n}]; |
|||
lambda[n_] := A^(2*n + 2) + A^(-2*n - 2); |
|||
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}]; |
|||
cheb[0, z_] = 1; |
|||
cheb[1, z_] = z; |
|||
cheb[n_, z_] := cheb[n, z] = z*cheb[n - 1, z] - cheb[n - 2, z];</nowiki> | |
|||
}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Expand[CableLink[hopfLink, |
<!--$$Expand[CableLink[hopfLink, |
||
R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[ |
R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[ |
||
Line 17: | Line 30: | ||
Expand[(-1)^1*bracketFact[3]/bracket[1]] |
Expand[(-1)^1*bracketFact[3]/bracket[1]] |
||
$$--> |
$$--> |
||
<!--Robot Land, no human edits to "END"--> |
|||
{{InOut| |
|||
n = 4 | |
|||
in = <nowiki>Expand[CableLink[hopfLink, |
|||
R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[ |
|||
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] |
|||
Expand[(-1)^1*bracketFact[3]/bracket[1]]</nowiki> | |
|||
out= <nowiki>-1/a^5 + 1/a + a - a^5 |
|||
-1/a^5 + 1/a + a - a^5</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
<!--$$Expand[CableLink[hopfLink, |
<!--$$Expand[CableLink[hopfLink, |
||
Line 23: | Line 45: | ||
Expand[(-1)^2*bracketFact[5]/bracket[1]] // |
Expand[(-1)^2*bracketFact[5]/bracket[1]] // |
||
$$--> |
$$--> |
||
{{InOut| |
|||
n = 5 | |
|||
in = <nowiki>Expand[CableLink[hopfLink, |
|||
R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[ |
|||
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}] |
|||
Expand[(-1)^2*bracketFact[5]/bracket[1]]</nowiki> | |
|||
out= <nowiki>2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14 |
|||
2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14</nowiki>}} |
|||
<!--END--> |
<!--END--> |
||
{{note|Masbaum}} Masbaum, Gregor. ''Skein-theoretical derivations of some formulas of Habiro.'' Alg. and Geo. Topology 3 (2003): 537–556. https://doi.org/10.2140/agt.2003.3.537 |
Latest revision as of 19:05, 5 August 2025
CableLink[link,poly,strandList,vars]
, whose code is available here, computes the Kauffman bracket of link (given as a PD) with components L1,L2,...,Ln, cabled by the polynomial poly in the variables z1,z2,...,zn. strandList is a list of strand labels of length n, where the ith element is the first strand label corresponding to component Li.
As an example, we can verify some formulas from [Masbaum], after importing KnotTheory` and the CableLink code:
In[3]:=
|
hopfLink=PD[X[3,1,4,2],X[2,4,1,3]];
bracket[n_]:=a^n-a^(-n);
bracketFact[n_]:=Product[bracket[i],{i,1,n}];
lambda[n_] := A^(2*n + 2) + A^(-2*n - 2);
R[z_, n_] := Product[z + lambda[2*i], {i, 0, n - 1}];
cheb[0, z_] = 1;
cheb[1, z_] = z;
cheb[n_, z_] := cheb[n, z] = z*cheb[n - 1, z] - cheb[n - 2, z];
|
In[4]:=
|
Expand[CableLink[hopfLink,
R[Subscript[z, 1], 1]*cheb[2, Subscript[z, 2]], {1, 3}, {Subscript[
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}]
Expand[(-1)^1*bracketFact[3]/bracket[1]]
|
Out[4]=
|
-1/a^5 + 1/a + a - a^5
-1/a^5 + 1/a + a - a^5
|
In[5]:=
|
Expand[CableLink[hopfLink,
R[Subscript[z, 1], 2]*cheb[4, Subscript[z, 2]], {1, 3}, {Subscript[
z, 1], Subscript[z, 2]}] /. {A -> a^(1/2)}]
Expand[(-1)^2*bracketFact[5]/bracket[1]]
|
Out[5]=
|
2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14
2 + 1/a^14 - 1/a^10 - 1/a^8 - 1/a^6 + 1/a^2 + a^2 - a^6 - a^8 - a^10 + a^14
|
[Masbaum] ^ Masbaum, Gregor. Skein-theoretical derivations of some formulas of Habiro. Alg. and Geo. Topology 3 (2003): 537–556. https://doi.org/10.2140/agt.2003.3.537