T(17,2): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- Script generated - do not edit! --> |
|||
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<span id="top"></span> |
|||
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page. |
|||
{{Knot Navigation Links|prev=T(8,3).jpg|next=T(19,2).jpg}} |
|||
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. --> |
|||
Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,1,-2,3/goTop.html T(17,2)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|||
<!-- --> |
|||
{{Torus Knot Page| |
|||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/17.2.html T(17,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
m = 17 | |
|||
n = 2 | |
|||
===Knot presentations=== |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-4,5,-6,7,-8,9,-10,11,-12,13,-14,15,-16,17,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,1,-2,3/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{| |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|style="padding-left: 1em;" | X<sub>15,33,16,32</sub> X<sub>33,17,34,16</sub> X<sub>17,1,18,34</sub> X<sub>1,19,2,18</sub> X<sub>19,3,20,2</sub> X<sub>3,21,4,20</sub> X<sub>21,5,22,4</sub> X<sub>5,23,6,22</sub> X<sub>23,7,24,6</sub> X<sub>7,25,8,24</sub> X<sub>25,9,26,8</sub> X<sub>9,27,10,26</sub> X<sub>27,11,28,10</sub> X<sub>11,29,12,28</sub> X<sub>29,13,30,12</sub> X<sub>13,31,14,30</sub> X<sub>31,15,32,14</sub> |
|||
</table> | |
|||
|- |
|||
same_alexander = | |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
same_jones = | |
|||
|style="padding-left: 1em;" | {-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 1, -2, 3} |
|||
khovanov_table = <table border=1> |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 18 20 22 24 26 28 30 32 34 2 4 6 8 10 12 14 16 |
|||
|} |
|||
===Polynomial invariants=== |
|||
{{Polynomial Invariants|name=T(17,2)}} |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
{| style="margin-left: 1em;" |
|||
|- |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
|style="padding-left: 1em;" | {0, 204}) |
|||
|} |
|||
[[Khovanov Homology]]. The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>16 is the signature of T(17,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=9.09091%><table cellpadding=0 cellspacing=0> |
<td width=9.09091%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=4.54545%>0</td ><td width=4.54545%>1</td ><td width=4.54545%>2</td ><td width=4.54545%>3</td ><td width=4.54545%>4</td ><td width=4.54545%>5</td ><td width=4.54545%>6</td ><td width=4.54545%>7</td ><td width=4.54545%>8</td ><td width=4.54545%>9</td ><td width=4.54545%>10</td ><td width=4.54545%>11</td ><td width=4.54545%>12</td ><td width=4.54545%>13</td ><td width=4.54545%>14</td ><td width=4.54545%>15</td ><td width=4.54545%>16</td ><td width=4.54545%>17</td ><td width=9.09091%>χ</td></tr> |
<td width=4.54545%>0</td ><td width=4.54545%>1</td ><td width=4.54545%>2</td ><td width=4.54545%>3</td ><td width=4.54545%>4</td ><td width=4.54545%>5</td ><td width=4.54545%>6</td ><td width=4.54545%>7</td ><td width=4.54545%>8</td ><td width=4.54545%>9</td ><td width=4.54545%>10</td ><td width=4.54545%>11</td ><td width=4.54545%>12</td ><td width=4.54545%>13</td ><td width=4.54545%>14</td ><td width=4.54545%>15</td ><td width=4.54545%>16</td ><td width=4.54545%>17</td ><td width=9.09091%>χ</td></tr> |
||
<tr align=center><td>51</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>51</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>49</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
<tr align=center><td>49</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
Line 64: | Line 48: | ||
<tr align=center><td>17</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>17</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{67}-q^{66}+q^{64}-q^{63}+q^{61}-q^{60}+q^{58}-q^{57}+q^{55}-q^{54}+q^{52}-2 q^{51}+q^{49}-q^{48}+q^{46}-q^{45}+q^{43}-q^{42}+q^{40}-q^{39}+q^{37}-q^{36}+q^{34}-q^{33}+q^{31}-q^{30}+q^{28}-q^{27}+q^{25}-q^{24}+q^{22}-q^{21}+q^{19}+q^{16}</math> | |
|||
coloured_jones_3 = | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = | |
|||
coloured_jones_5 = | |
|||
<table> |
|||
coloured_jones_6 = | |
|||
<tr valign=top> |
|||
coloured_jones_7 = | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[17, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[15, 33, 16, 32], X[33, 17, 34, 16], X[17, 1, 18, 34], |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[17, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>17</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>TubePlot[TorusKnot[17, 2]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:T(17,2).jpg]]</td></tr><tr valign=top><td><tt><font color=blue>Out[3]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[17, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[15, 33, 16, 32], X[33, 17, 34, 16], X[17, 1, 18, 34], |
|||
X[1, 19, 2, 18], X[19, 3, 20, 2], X[3, 21, 4, 20], X[21, 5, 22, 4], |
X[1, 19, 2, 18], X[19, 3, 20, 2], X[3, 21, 4, 20], X[21, 5, 22, 4], |
||
Line 86: | Line 75: | ||
X[29, 13, 30, 12], X[13, 31, 14, 30], X[31, 15, 32, 14]]</nowiki></pre></td></tr> |
X[29, 13, 30, 12], X[13, 31, 14, 30], X[31, 15, 32, 14]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[17, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -1, |
||
2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 1, |
2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 1, |
||
-2, 3]</nowiki></pre></td></tr> |
-2, 3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[17, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[17, 2]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -7 -6 -5 -4 -3 -2 1 2 3 4 |
||
1 + t - t + t - t + t - t + t - - - t + t - t + t - |
1 + t - t + t - t + t - t + t - - - t + t - t + t - |
||
t |
t |
||
Line 101: | Line 90: | ||
5 6 7 8 |
5 6 7 8 |
||
t + t - t + t</nowiki></pre></td></tr> |
t + t - t + t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[17, 2]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 16 |
||
1 + 36 z + 210 z + 462 z + 495 z + 286 z + 91 z + 15 z + z</nowiki></pre></td></tr> |
1 + 36 z + 210 z + 462 z + 495 z + 286 z + 91 z + 15 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[17, 2]], KnotSignature[TorusKnot[17, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{17, 16}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[17, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 8 10 11 12 13 14 15 16 17 18 19 20 |
||
q + q - q + q - q + q - q + q - q + q - q + q - |
q + q - q + q - q + q - q + q - q + q - q + q - |
||
21 22 23 24 25 |
21 22 23 24 25 |
||
q + q - q + q - q</nowiki></pre></td></tr> |
q + q - q + q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[17, 2]][q]</nowiki></pre></td></tr> |
|||
Include[ColouredJonesM.mhtml] |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[17, 2]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
|||
q + q + 2 q + q + q - q - q - q</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[17, 2]], Vassiliev[3][TorusKnot[17, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{36, 204}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[17, 2]][q, t]</nowiki></pre></td></tr> |
|||
8 9 z z z z z z z z 8 z z |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 15 17 19 2 23 3 23 4 27 5 27 6 31 7 |
|||
--- + --- + --- - --- + --- - --- + --- - --- + --- - --- - --- + --- - |
|||
18 16 33 31 29 27 25 23 21 19 17 32 |
|||
a a a a a a a a a a a a |
|||
2 2 2 2 2 2 2 2 3 |
|||
2 z 3 z 4 z 5 z 6 z 7 z 92 z 120 z z |
|||
---- + ---- - ---- + ---- - ---- + ---- - ----- - ------ + --- - |
|||
30 28 26 24 22 20 18 16 31 |
|||
a a a a a a a a a |
|||
3 3 3 3 3 3 3 4 4 |
|||
3 z 6 z 10 z 15 z 21 z 28 z 84 z z 4 z |
|||
---- + ---- - ----- + ----- - ----- + ----- + ----- + --- - ---- + |
|||
29 27 25 23 21 19 17 30 28 |
|||
a a a a a a a a a |
|||
4 4 4 4 4 4 5 5 |
|||
10 z 20 z 35 z 56 z 336 z 462 z z 5 z |
|||
----- - ----- + ----- - ----- + ------ + ------ + --- - ---- + |
|||
26 24 22 20 18 16 29 27 |
|||
a a a a a a a a |
|||
5 5 5 5 5 6 6 6 |
|||
15 z 35 z 70 z 126 z 252 z z 6 z 21 z |
|||
----- - ----- + ----- - ------ - ------ + --- - ---- + ----- - |
|||
25 23 21 19 17 28 26 24 |
|||
a a a a a a a a |
|||
6 6 6 6 7 7 7 7 |
|||
56 z 126 z 582 z 792 z z 7 z 28 z 84 z |
|||
----- + ------ - ------ - ------ + --- - ---- + ----- - ----- + |
|||
22 20 18 16 27 25 23 21 |
|||
a a a a a a a a |
|||
7 7 8 8 8 8 8 8 |
|||
210 z 330 z z 8 z 36 z 120 z 550 z 715 z |
|||
------ + ------ + --- - ---- + ----- - ------ + ------ + ------ + |
|||
19 17 26 24 22 20 18 16 |
|||
a a a a a a a a |
|||
9 9 9 9 9 10 10 10 |
|||
z 9 z 45 z 165 z 220 z z 10 z 55 z |
|||
--- - ---- + ----- - ------ - ------ + --- - ------ + ------ - |
|||
25 23 21 19 17 24 22 20 |
|||
a a a a a a a a |
|||
10 10 11 11 11 11 12 12 |
|||
298 z 364 z z 11 z 66 z 78 z z 12 z |
|||
------- - ------- + --- - ------ + ------ + ------ + --- - ------ + |
|||
18 16 23 21 19 17 22 20 |
|||
a a a a a a a a |
|||
12 12 13 13 13 14 14 14 |
|||
92 z 105 z z 13 z 14 z z 15 z 16 z |
|||
------ + ------- + --- - ------ - ------ + --- - ------ - ------ + |
|||
18 16 21 19 17 20 18 16 |
|||
a a a a a a a a |
|||
15 15 16 16 |
|||
z z z z |
|||
--- + --- + --- + --- |
|||
19 17 18 16 |
|||
a a a a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[17, 2]], Vassiliev[3][TorusKnot[17, 2]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 204}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[17, 2]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 15 17 19 2 23 3 23 4 27 5 27 6 31 7 |
|||
q + q + q t + q t + q t + q t + q t + q t + |
q + q + q t + q t + q t + q t + q t + q t + |
||
Line 197: | Line 120: | ||
47 15 47 16 51 17 |
47 15 47 16 51 17 |
||
q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> }} |
Latest revision as of 10:38, 31 August 2005
|
|
See other torus knots | |
Edit T(17,2) Quick Notes
|
Edit T(17,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X15,33,16,32 X33,17,34,16 X17,1,18,34 X1,19,2,18 X19,3,20,2 X3,21,4,20 X21,5,22,4 X5,23,6,22 X23,7,24,6 X7,25,8,24 X25,9,26,8 X9,27,10,26 X27,11,28,10 X11,29,12,28 X29,13,30,12 X13,31,14,30 X31,15,32,14 |
Gauss code | -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 1, -2, 3 |
Dowker-Thistlethwaite code | 18 20 22 24 26 28 30 32 34 2 4 6 8 10 12 14 16 |
Braid presentation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(17,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 17, 16 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["T(17,2)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (36, 204) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 16 is the signature of T(17,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|