Torus Knot Splice Base: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(18 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- Script generated - do not edit! -->
<!-- <* (* -->{{Splice Base Notice}}<!-- *) *> -->
<!-- <* (* --><!-- You can ignore this warning; it's for people trying to edit individual knot pages--><!-- *) *> -->

<!-- WARNING! WARNING! WARNING!
<!-- <*K=Knot[ThisKnot]; {m,n}=List@@K;*> -->
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit!

<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page.
<span id="top"></span>
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately.

<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. -->
{{Knot Navigation Links|name={{PAGENAME}}|ext=jpg}}
<!-- <*{m,n}=List@@K;*> -->

{{Torus Knot Page|
{| align=left
m = <*m*> |
|- valign=top
n = <*n*> |
|[[Image:<*ThisKnot*>.jpg]]
KnotilusURL = <*KnotilusURL[K]*> |
|Visit [<*KnotilusURL[K]<>" "<>ThisKnot*>'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
braid_table = <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif",

"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> |
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/<*m*>.<*n*>.html <*ThisKnot*>'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!
same_alexander = <* alex = Alexander[K][t];

others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K];
{{:<*ThisKnot*> Quick Notes}}
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]
|}
*> |

same_jones = <* J = Jones[K][q];
<br style="clear:both" />
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&], K];

If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]
{{:<*ThisKnot*> Further Notes and Views}}
*> |

khovanov_table = <*TabularKh[Kh[K][q, t], KnotSignature[K]+{1,-1}]*> |
===Knot presentations===
coloured_jones_2 = <*ColouredJones[K, 2][q]*> |

coloured_jones_3 = <*ColouredJones[K, 3][q]*> |
{|
coloured_jones_4 = <*ColouredJones[K, 4][q]*> |
|'''[[Planar Diagrams|Planar diagram presentation]]'''
coloured_jones_5 = <*ColouredJones[K, 5][q]*> |
|style="padding-left: 1em;" | <*PD[K]*>
coloured_jones_6 = <*ColouredJones[K, 6][q]*> |
|-
coloured_jones_7 = <*ColouredJones[K, 7][q]*>
|'''[[Gauss Codes|Gauss code]]'''
}}
|style="padding-left: 1em;" | <*List @@ GaussCode[K]*>
|-
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
|style="padding-left: 1em;" | <*StringReplace[StringTake[ToString[DTCode[K]], {8, -2}], ","->""]*>
|}

{{Polynomial Invariants|name=<*ThisKnot*>}}

===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]===
{| style="margin-left: 1em;"
|-
|'''V<sub>2</sub> and V<sub>3</sub>'''
|style="padding-left: 1em;" | <*{Vassiliev[2][K], Vassiliev[3][K]}*>
|}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math><*s=KnotSignature[K]*> is the signature of <*ThisKnot*>. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><*TabularKh[Kh[K][q, t], s+{1,-1}]*></center>

{{Computer Talk Header}}

<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em"><*InOut[1]; KnotTheoryWelcomeMessage[]*></pre></td></tr>
<*InOut["Crossings[``]", K]*>
<*InOut["PD[``]", K]*>
<*InOut["GaussCode[``]", K]*>
<*InOut["BR[``]", K]*>
<*InOut["alex = Alexander[``][t]", K]*>
<*InOut["Conway[``][z]", K]*>
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*>
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*>
<*InOut["J=Jones[``][q]", K]*>
<*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*>
<* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *>
<*InOut["A2Invariant[``][q]", K]*>
<*InOut["Kauffman[``][a, z]", K]*>
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*>
<*InOut["Kh[``][q, t]", K]*>
</table>

Latest revision as of 16:09, 18 September 2005

Stop hand.png This page is a 'splice base'.
It is used to generate knot pages for each knot in a certain knot table. Be careful editting! Changes will not be reflected on individual knot pages until the 'splicer' is run again.

[[Image:Data:Torus Knot Splice Base/Previous Knot.jpg|80px|link=Data:Torus Knot Splice Base/Previous Knot]]

[[Data:Torus Knot Splice Base/Previous Knot]]

[[Image:Data:Torus Knot Splice Base/Next Knot.jpg|80px|link=Data:Torus Knot Splice Base/Next Knot]]

[[Data:Torus Knot Splice Base/Next Knot]]

File:Torus Knot Splice Base.jpg See other torus knots

Visit Torus Knot Splice Base at Knotilus!

Edit Torus Knot Splice Base Quick Notes


Edit Torus Knot Splice Base Further Notes and Views


Knot presentations

Planar diagram presentation Data:Torus Knot Splice Base/PD Presentation
Gauss code Data:Torus Knot Splice Base/Gauss Code
Dowker-Thistlethwaite code Data:Torus Knot Splice Base/DT Code
Braid presentation <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif",
                    "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *>

Polynomial invariants

Alexander polynomial Data:Torus Knot Splice Base/Alexander Polynomial
Conway polynomial Data:Torus Knot Splice Base/Conway Polynomial
2nd Alexander ideal (db, data sources) Data:Torus Knot Splice Base/2nd AlexanderIdeal
Determinant and Signature { Data:Torus Knot Splice Base/Determinant, Data:Torus Knot Splice Base/Signature }
Jones polynomial Data:Torus Knot Splice Base/Jones Polynomial
HOMFLY-PT polynomial (db, data sources) Data:Torus Knot Splice Base/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:Torus Knot Splice Base/Kauffman Polynomial
The A2 invariant Data:Torus Knot Splice Base/QuantumInvariant/A2/1,0
The G2 invariant Data:Torus Knot Splice Base/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {<* alex = Alexander[K][t];

                     others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K];
                     If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]]
                 *>}

Same Jones Polynomial (up to mirroring, ): {<* J = Jones[K][q];

                   others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]}

Vassiliev invariants

V2 and V3: (Data:Torus Knot Splice Base/V 2, Data:Torus Knot Splice Base/V 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:Torus Knot Splice Base/V 2,1 Data:Torus Knot Splice Base/V 3,1 Data:Torus Knot Splice Base/V 4,1 Data:Torus Knot Splice Base/V 4,2 Data:Torus Knot Splice Base/V 4,3 Data:Torus Knot Splice Base/V 5,1 Data:Torus Knot Splice Base/V 5,2 Data:Torus Knot Splice Base/V 5,3 Data:Torus Knot Splice Base/V 5,4 Data:Torus Knot Splice Base/V 6,1 Data:Torus Knot Splice Base/V 6,2 Data:Torus Knot Splice Base/V 6,3 Data:Torus Knot Splice Base/V 6,4 Data:Torus Knot Splice Base/V 6,5 Data:Torus Knot Splice Base/V 6,6 Data:Torus Knot Splice Base/V 6,7 Data:Torus Knot Splice Base/V 6,8 Data:Torus Knot Splice Base/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Torus Knot Splice Base/Signature is the signature of Torus Knot Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.    Data:Torus Knot Splice Base/KhovanovTable
Integral Khovanov Homology

(db, data source)

   Data:Torus Knot Splice Base/Integral Khovanov Homology

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Torus Knot Page master template (intermediate).

See/edit the Torus Knot_Splice_Base (expert).

Back to the top.

[[Image:Data:Torus Knot Splice Base/Previous Knot.jpg|80px|link=Data:Torus Knot Splice Base/Previous Knot]]

[[Data:Torus Knot Splice Base/Previous Knot]]

[[Image:Data:Torus Knot Splice Base/Next Knot.jpg|80px|link=Data:Torus Knot Splice Base/Next Knot]]

[[Data:Torus Knot Splice Base/Next Knot]]