10 69: Difference between revisions
No edit summary |
No edit summary |
||
(5 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
n = 10 | |
|||
<span id="top"></span> |
|||
k = 69 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,10,-9,3,-4,2,-5,6,-7,5,-8,9,-10,8/goTop.html | |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{| align=left |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
|- valign=top |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|{{Rolfsen Knot Site Links|n=10|k=69|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-6,7,-2,10,-9,3,-4,2,-5,6,-7,5,-8,9,-10,8/goTop.html}} |
|||
</table> | |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
braid_crossings = 12 | |
|||
|} |
|||
braid_width = 5 | |
|||
braid_index = 5 | |
|||
<br style="clear:both" /> |
|||
same_alexander = | |
|||
same_jones = | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
khovanov_table = <table border=1> |
|||
{{Knot Presentations}} |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=6.66667%>7</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>17</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>2</td></tr> |
||
Line 48: | Line 41: | ||
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
<tr align=center><td>-3</td><td bgcolor=yellow> </td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
||
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{23}-3 q^{22}+2 q^{21}+9 q^{20}-21 q^{19}+4 q^{18}+43 q^{17}-60 q^{16}-9 q^{15}+107 q^{14}-100 q^{13}-43 q^{12}+172 q^{11}-117 q^{10}-83 q^9+202 q^8-101 q^7-104 q^6+180 q^5-59 q^4-95 q^3+117 q^2-19 q-61+51 q^{-1} -24 q^{-3} +13 q^{-4} +2 q^{-5} -4 q^{-6} + q^{-7} </math> | |
|||
coloured_jones_3 = <math>-q^{45}+3 q^{44}-2 q^{43}-4 q^{42}+q^{41}+17 q^{40}-5 q^{39}-39 q^{38}+2 q^{37}+83 q^{36}+11 q^{35}-143 q^{34}-61 q^{33}+235 q^{32}+135 q^{31}-320 q^{30}-265 q^{29}+402 q^{28}+434 q^{27}-461 q^{26}-625 q^{25}+477 q^{24}+832 q^{23}-464 q^{22}-1010 q^{21}+397 q^{20}+1175 q^{19}-324 q^{18}-1270 q^{17}+207 q^{16}+1330 q^{15}-100 q^{14}-1309 q^{13}-30 q^{12}+1244 q^{11}+143 q^{10}-1115 q^9-241 q^8+945 q^7+306 q^6-744 q^5-341 q^4+552 q^3+321 q^2-362 q-284+224 q^{-1} +214 q^{-2} -114 q^{-3} -153 q^{-4} +55 q^{-5} +90 q^{-6} -16 q^{-7} -53 q^{-8} +6 q^{-9} +23 q^{-10} -8 q^{-12} -2 q^{-13} +4 q^{-14} - q^{-15} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = <math>q^{74}-3 q^{73}+2 q^{72}+4 q^{71}-6 q^{70}+3 q^{69}-16 q^{68}+16 q^{67}+34 q^{66}-29 q^{65}-14 q^{64}-87 q^{63}+63 q^{62}+184 q^{61}-28 q^{60}-95 q^{59}-393 q^{58}+67 q^{57}+606 q^{56}+249 q^{55}-126 q^{54}-1218 q^{53}-354 q^{52}+1233 q^{51}+1184 q^{50}+396 q^{49}-2512 q^{48}-1703 q^{47}+1462 q^{46}+2751 q^{45}+2072 q^{44}-3607 q^{43}-3958 q^{42}+614 q^{41}+4270 q^{40}+4814 q^{39}-3754 q^{38}-6333 q^{37}-1312 q^{36}+4975 q^{35}+7772 q^{34}-2842 q^{33}-7961 q^{32}-3616 q^{31}+4668 q^{30}+10016 q^{29}-1326 q^{28}-8457 q^{27}-5573 q^{26}+3583 q^{25}+11061 q^{24}+349 q^{23}-7816 q^{22}-6805 q^{21}+1953 q^{20}+10743 q^{19}+1940 q^{18}-6116 q^{17}-7108 q^{16}+19 q^{15}+9050 q^{14}+3088 q^{13}-3655 q^{12}-6261 q^{11}-1678 q^{10}+6290 q^9+3313 q^8-1184 q^7-4413 q^6-2450 q^5+3364 q^4+2524 q^3+384 q^2-2313 q-2106+1260 q^{-1} +1320 q^{-2} +785 q^{-3} -814 q^{-4} -1227 q^{-5} +285 q^{-6} +433 q^{-7} +528 q^{-8} -150 q^{-9} -503 q^{-10} +25 q^{-11} +65 q^{-12} +213 q^{-13} +7 q^{-14} -146 q^{-15} -9 q^{-17} +54 q^{-18} +12 q^{-19} -29 q^{-20} + q^{-21} -5 q^{-22} +8 q^{-23} +2 q^{-24} -4 q^{-25} + q^{-26} </math> | |
|||
coloured_jones_5 = <math>-q^{110}+3 q^{109}-2 q^{108}-4 q^{107}+6 q^{106}+2 q^{105}-4 q^{104}+5 q^{103}-11 q^{102}-22 q^{101}+23 q^{100}+43 q^{99}+11 q^{98}-14 q^{97}-91 q^{96}-111 q^{95}+43 q^{94}+237 q^{93}+240 q^{92}-4 q^{91}-416 q^{90}-629 q^{89}-173 q^{88}+712 q^{87}+1263 q^{86}+709 q^{85}-927 q^{84}-2331 q^{83}-1819 q^{82}+831 q^{81}+3682 q^{80}+3875 q^{79}+33 q^{78}-5244 q^{77}-6859 q^{76}-2134 q^{75}+6237 q^{74}+10922 q^{73}+5989 q^{72}-6302 q^{71}-15435 q^{70}-11638 q^{69}+4407 q^{68}+19803 q^{67}+19118 q^{66}-339 q^{65}-23159 q^{64}-27634 q^{63}-6160 q^{62}+24674 q^{61}+36446 q^{60}+14800 q^{59}-24044 q^{58}-44606 q^{57}-24687 q^{56}+21041 q^{55}+51260 q^{54}+35214 q^{53}-16172 q^{52}-56120 q^{51}-45110 q^{50}+9830 q^{49}+58825 q^{48}+54146 q^{47}-2934 q^{46}-59730 q^{45}-61387 q^{44}-4259 q^{43}+58882 q^{42}+67230 q^{41}+11026 q^{40}-56786 q^{39}-71073 q^{38}-17556 q^{37}+53330 q^{36}+73624 q^{35}+23481 q^{34}-48866 q^{33}-74269 q^{32}-29103 q^{31}+43038 q^{30}+73458 q^{29}+34167 q^{28}-36114 q^{27}-70632 q^{26}-38518 q^{25}+27940 q^{24}+65885 q^{23}+41739 q^{22}-19019 q^{21}-59028 q^{20}-43384 q^{19}+9905 q^{18}+50365 q^{17}+42957 q^{16}-1405 q^{15}-40314 q^{14}-40415 q^{13}-5663 q^{12}+29961 q^{11}+35679 q^{10}+10586 q^9-19945 q^8-29561 q^7-13195 q^6+11564 q^5+22657 q^4+13425 q^3-4986 q^2-16044 q-12053+810 q^{-1} +10277 q^{-2} +9605 q^{-3} +1561 q^{-4} -5948 q^{-5} -6966 q^{-6} -2282 q^{-7} +2915 q^{-8} +4554 q^{-9} +2265 q^{-10} -1209 q^{-11} -2741 q^{-12} -1681 q^{-13} +277 q^{-14} +1451 q^{-15} +1186 q^{-16} +55 q^{-17} -742 q^{-18} -672 q^{-19} -134 q^{-20} +300 q^{-21} +370 q^{-22} +133 q^{-23} -133 q^{-24} -185 q^{-25} -66 q^{-26} +48 q^{-27} +64 q^{-28} +46 q^{-29} -5 q^{-30} -45 q^{-31} -13 q^{-32} +11 q^{-33} +5 q^{-34} +4 q^{-35} +5 q^{-36} -8 q^{-37} -2 q^{-38} +4 q^{-39} - q^{-40} </math> | |
|||
<table> |
|||
coloured_jones_6 = <math>q^{153}-3 q^{152}+2 q^{151}+4 q^{150}-6 q^{149}-2 q^{148}-q^{147}+15 q^{146}-10 q^{145}-q^{144}+28 q^{143}-37 q^{142}-30 q^{141}-13 q^{140}+77 q^{139}+25 q^{138}+16 q^{137}+95 q^{136}-172 q^{135}-228 q^{134}-159 q^{133}+263 q^{132}+308 q^{131}+360 q^{130}+480 q^{129}-561 q^{128}-1153 q^{127}-1254 q^{126}+185 q^{125}+1187 q^{124}+2222 q^{123}+2830 q^{122}-345 q^{121}-3582 q^{120}-5840 q^{119}-3119 q^{118}+999 q^{117}+7049 q^{116}+11702 q^{115}+5902 q^{114}-4632 q^{113}-16430 q^{112}-17035 q^{111}-9338 q^{110}+9969 q^{109}+30667 q^{108}+29753 q^{107}+9643 q^{106}-25339 q^{105}-46128 q^{104}-46371 q^{103}-9077 q^{102}+48021 q^{101}+76748 q^{100}+61052 q^{99}-5489 q^{98}-73901 q^{97}-115855 q^{96}-76895 q^{95}+29385 q^{94}+125127 q^{93}+154418 q^{92}+73981 q^{91}-59584 q^{90}-190230 q^{89}-196007 q^{88}-58377 q^{87}+128868 q^{86}+256318 q^{85}+212139 q^{84}+29782 q^{83}-219573 q^{82}-327261 q^{81}-209585 q^{80}+56438 q^{79}+314426 q^{78}+365081 q^{77}+183183 q^{76}-174563 q^{75}-417104 q^{74}-376572 q^{73}-77438 q^{72}+301775 q^{71}+479632 q^{70}+351254 q^{69}-71583 q^{68}-440451 q^{67}-507943 q^{66}-225474 q^{65}+234221 q^{64}+532645 q^{63}+486687 q^{62}+47351 q^{61}-410722 q^{60}-582966 q^{59}-347730 q^{58}+146413 q^{57}+534670 q^{56}+572713 q^{55}+151582 q^{54}-354261 q^{53}-609988 q^{52}-433462 q^{51}+59356 q^{50}+504456 q^{49}+616966 q^{48}+236940 q^{47}-282948 q^{46}-601618 q^{45}-491012 q^{44}-28635 q^{43}+446200 q^{42}+627244 q^{41}+312203 q^{40}-190207 q^{39}-555571 q^{38}-523805 q^{37}-125675 q^{36}+349536 q^{35}+595214 q^{34}+375256 q^{33}-69685 q^{32}-458164 q^{31}-516598 q^{30}-222600 q^{29}+210606 q^{28}+503619 q^{27}+402191 q^{26}+61232 q^{25}-308130 q^{24}-447067 q^{23}-285746 q^{22}+54973 q^{21}+353221 q^{20}+364485 q^{19}+159174 q^{18}-138309 q^{17}-316308 q^{16}-280859 q^{15}-66294 q^{14}+182376 q^{13}+263001 q^{12}+185928 q^{11}-4633 q^{10}-165324 q^9-209517 q^8-114346 q^7+48543 q^6+139926 q^5+145060 q^4+56360 q^3-49406 q^2-114531 q-96180-16455 q^{-1} +46574 q^{-2} +79144 q^{-3} +55332 q^{-4} +5971 q^{-5} -42476 q^{-6} -53117 q^{-7} -26252 q^{-8} +2555 q^{-9} +29120 q^{-10} +30777 q^{-11} +16168 q^{-12} -8288 q^{-13} -19992 q^{-14} -15023 q^{-15} -7012 q^{-16} +6080 q^{-17} +11202 q^{-18} +9900 q^{-19} +788 q^{-20} -4943 q^{-21} -5119 q^{-22} -4545 q^{-23} -53 q^{-24} +2616 q^{-25} +3823 q^{-26} +1091 q^{-27} -702 q^{-28} -1015 q^{-29} -1647 q^{-30} -516 q^{-31} +305 q^{-32} +1102 q^{-33} +354 q^{-34} -35 q^{-35} -55 q^{-36} -407 q^{-37} -197 q^{-38} -30 q^{-39} +268 q^{-40} +56 q^{-41} -3 q^{-42} +32 q^{-43} -74 q^{-44} -40 q^{-45} -25 q^{-46} +59 q^{-47} +4 q^{-48} -10 q^{-49} +13 q^{-50} -10 q^{-51} -4 q^{-52} -5 q^{-53} +8 q^{-54} +2 q^{-55} -4 q^{-56} + q^{-57} </math> | |
|||
<tr valign=top> |
|||
coloured_jones_7 = | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 69]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 69]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[7, 12, 8, 13], X[3, 11, 4, 10], X[11, 3, 12, 2], |
|||
X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], |
X[13, 17, 14, 16], X[5, 15, 6, 14], X[15, 7, 16, 6], |
||
X[17, 20, 18, 1], X[9, 19, 10, 18], X[19, 9, 20, 8]]</nowiki></ |
X[17, 20, 18, 1], X[9, 19, 10, 18], X[19, 9, 20, 8]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 69]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 69]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8, |
|||
9, -10, 8]</nowiki></ |
9, -10, 8]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 69]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 69]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 10, 14, 12, 18, 2, 16, 6, 20, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 69]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {1, 1, 2, -1, -3, 2, 1, 4, -3, 2, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 69]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 69]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_69_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 69]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 69]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 7 21 2 3 |
|||
-29 + t - -- + -- + 21 t - 7 t + t |
-29 + t - -- + -- + 21 t - 7 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 69]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 2 z - z + z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 69]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 69]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 2 z - z + z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 69]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 4 2 3 4 5 6 7 8 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 69]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 69]], KnotSignature[Knot[10, 69]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{87, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 69]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -2 4 2 3 4 5 6 7 8 |
|||
-7 - q + - + 11 q - 14 q + 15 q - 13 q + 11 q - 7 q + 3 q - q |
-7 - q + - + 11 q - 14 q + 15 q - 13 q + 11 q - 7 q + 3 q - q |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 69]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 2 -2 2 4 6 8 12 14 16 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 69]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 69]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 2 -2 2 4 6 8 12 14 16 |
|||
-q + -- - q + 4 q - 3 q + 2 q - q + 2 q - 2 q + 3 q - |
-q + -- - q + 4 q - 3 q + 2 q - q + 2 q - 2 q + 3 q - |
||
4 |
4 |
||
Line 98: | Line 180: | ||
18 20 22 24 26 |
18 20 22 24 26 |
||
q - q + 2 q - q - q</nowiki></ |
q - q + 2 q - q - q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 69]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 69]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 4 4 6 |
|||
-8 2 2 2 2 3 z 5 z 5 z 4 3 z 3 z z |
|||
-a + -- - -- + -- - z + ---- - ---- + ---- - z - ---- + ---- + -- |
|||
6 4 2 6 4 2 4 2 2 |
|||
a a a a a a a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 69]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
-8 2 2 2 z 2 z 6 z 4 z z 2 3 z 7 z |
-8 2 2 2 z 2 z 6 z 4 z z 2 3 z 7 z |
||
-a - -- - -- - -- + -- - --- - --- - --- - - + 3 z + ---- + ---- + |
-a - -- - -- - -- + -- - --- - --- - --- - - + 3 z + ---- + ---- + |
||
Line 128: | Line 226: | ||
---- + ---- + ---- + -- + -- |
---- + ---- + ---- + -- + -- |
||
6 4 2 5 3 |
6 4 2 5 3 |
||
a a a a a</nowiki></ |
a a a a a</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 69]], Vassiliev[3][Knot[10, 69]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 4}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 69]], Vassiliev[3][Knot[10, 69]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 4}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 69]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 3 1 4 3 q 3 5 |
|||
7 q + 5 q + ----- + ----- + ---- + --- + --- + 8 q t + 6 q t + |
7 q + 5 q + ----- + ----- + ---- + --- + --- + 8 q t + 6 q t + |
||
5 3 3 2 2 q t t |
5 3 3 2 2 q t t |
||
Line 141: | Line 249: | ||
11 5 13 5 13 6 15 6 17 7 |
11 5 13 5 13 6 15 6 17 7 |
||
2 q t + 5 q t + q t + 2 q t + q t</nowiki></ |
2 q t + 5 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 69], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -7 4 2 13 24 51 2 3 4 |
|||
-61 + q - -- + -- + -- - -- + -- - 19 q + 117 q - 95 q - 59 q + |
|||
6 5 4 3 q |
|||
q q q q |
|||
5 6 7 8 9 10 11 |
|||
180 q - 104 q - 101 q + 202 q - 83 q - 117 q + 172 q - |
|||
12 13 14 15 16 17 18 |
|||
43 q - 100 q + 107 q - 9 q - 60 q + 43 q + 4 q - |
|||
19 20 21 22 23 |
|||
21 q + 9 q + 2 q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:59, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 69's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X17,20,18,1 X9,19,10,18 X19,9,20,8 |
Gauss code | -1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8, 9, -10, 8 |
Dowker-Thistlethwaite code | 4 10 14 12 18 2 16 6 20 8 |
Conway Notation | [211,21,21] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
[{15, 3}, {4, 2}, {3, 7}, {1, 4}, {6, 13}, {8, 10}, {7, 9}, {5, 8}, {2, 6}, {14, 11}, {10, 12}, {9, 5}, {11, 1}, {13, 15}, {12, 14}] |
[edit Notes on presentations of 10 69]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 69"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X7,12,8,13 X3,11,4,10 X11,3,12,2 X13,17,14,16 X5,15,6,14 X15,7,16,6 X17,20,18,1 X9,19,10,18 X19,9,20,8 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -6, 7, -2, 10, -9, 3, -4, 2, -5, 6, -7, 5, -8, 9, -10, 8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 10 14 12 18 2 16 6 20 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[211,21,21] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{15, 3}, {4, 2}, {3, 7}, {1, 4}, {6, 13}, {8, 10}, {7, 9}, {5, 8}, {2, 6}, {14, 11}, {10, 12}, {9, 5}, {11, 1}, {13, 15}, {12, 14}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 69"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 87, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 69"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, 4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 69. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|