Hoste-Thistlethwaite Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
(15 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- <* (* -->{{Splice |
<!-- <* (* -->{{Splice Base Notice}}<!-- *) *> --> |
||
<!-- <* (* --><!-- You can ignore this warning; it's for people trying to edit individual knot pages--><!-- *) *> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
⚫ | |||
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page. |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately. |
|||
<span id="top"></span> |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. --> |
|||
⚫ | |||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Hoste-Thistlethwaite Knot Page| |
|||
{{Knot Navigation Links|ext=gif}} |
|||
n = <*n*> | |
|||
t = <*If[AlternatingQ[K],"a","n"]*> | |
|||
{| align=left |
|||
k = <*k*> | |
|||
|- valign=top |
|||
KnotilusURL = <*KnotilusURL[K]*> | |
|||
|[[Image:{{PAGENAME}}.gif]] |
|||
braid_table = <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", |
|||
|{{Hoste-Thistlethwaite Knot Site Links|n=<*n*>|t=<*If[AlternatingQ[K],"a","n"]*>|k=<*k*>|KnotilusURL=<*KnotilusURL[K]*>}} |
|||
Images -> {"BraidPart0.gif", "BraidPart1.gif", |
|||
|{{:{{PAGENAME}} Quick Notes}} |
|||
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> | |
|||
⚫ | |||
⚫ | |||
⚫ | |||
<br style="clear:both" /> |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
*> | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
same_jones = <* J = Jones[K][q]; |
|||
⚫ | |||
{{Knot Presentations}} |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
{{3D Invariants}} |
|||
*> | |
|||
{{4D Invariants}} |
|||
⚫ | |||
{{Polynomial Invariants}} |
|||
coloured_jones_2 = <*ColouredJones[K, 2][q]*> | |
|||
{{Vassiliev Invariants}} |
|||
coloured_jones_3 = <*ColouredJones[K, 3][q]*> | |
|||
coloured_jones_4 = <*ColouredJones[K, 4][q]*> | |
|||
===[[Khovanov Homology]]=== |
|||
coloured_jones_5 = <*ColouredJones[K, 5][q]*> | |
|||
coloured_jones_6 = <*ColouredJones[K, 6][q]*> | |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
coloured_jones_7 = <*ColouredJones[K, 7][q]*> |
|||
⚫ | |||
⚫ | |||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em"><*InOut[1]; KnotTheoryWelcomeMessage[]*></pre></td></tr> |
|||
<*InOut["Crossings[``]", K]*> |
|||
<*InOut["PD[``]", K]*> |
|||
<*InOut["GaussCode[``]", K]*> |
|||
<*InOut["BR[``]", K]*> |
|||
⚫ | |||
<*InOut["Conway[``][z]", K]*> |
|||
⚫ | |||
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> |
|||
<*InOut["J=Jones[``][q]", K]*> |
|||
<*InOut[ |
|||
⚫ | |||
]*> |
|||
<* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> |
|||
<*InOut["A2Invariant[``][q]", K]*> |
|||
<*InOut["Kauffman[``][a, z]", K]*> |
|||
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> |
|||
<*InOut["Kh[``][q, t]", K]*> |
|||
</table> |
|||
<* (* <!-- *) *> {{Category:Knot Page}} <* (* --> *) *> |
Latest revision as of 16:13, 18 September 2005
[[Image:Data:Hoste-Thistlethwaite Splice Base/Previous Knot.gif|80px|link=Data:Hoste-Thistlethwaite Splice Base/Previous Knot]] |
[[Image:Data:Hoste-Thistlethwaite Splice Base/Next Knot.gif|80px|link=Data:Hoste-Thistlethwaite Splice Base/Next Knot]] |
File:Hoste-Thistlethwaite Splice Base.gif (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.
Visit Hoste-Thistlethwaite Splice Base at Knotilus! |
Knot presentations
A Braid Representative | <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki",
Images -> {"BraidPart0.gif", "BraidPart1.gif", "BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> |
A Morse Link Presentation | File:Hoste-Thistlethwaite Splice Base ML.gif |
Three dimensional invariants
Four dimensional invariants
|
[edit Notes for Hoste-Thistlethwaite Splice Base's four dimensional invariants] |
Polynomial invariants
Alexander polynomial | Data:Hoste-Thistlethwaite Splice Base/Alexander Polynomial |
Conway polynomial | Data:Hoste-Thistlethwaite Splice Base/Conway Polynomial |
2nd Alexander ideal (db, data sources) | Data:Hoste-Thistlethwaite Splice Base/2nd AlexanderIdeal |
Determinant and Signature | { Data:Hoste-Thistlethwaite Splice Base/Determinant, Data:Hoste-Thistlethwaite Splice Base/Signature } |
Jones polynomial | Data:Hoste-Thistlethwaite Splice Base/Jones Polynomial |
HOMFLY-PT polynomial (db, data sources) | Data:Hoste-Thistlethwaite Splice Base/HOMFLYPT Polynomial |
Kauffman polynomial (db, data sources) | Data:Hoste-Thistlethwaite Splice Base/Kauffman Polynomial |
The A2 invariant | Data:Hoste-Thistlethwaite Splice Base/QuantumInvariant/A2/1,0 |
The G2 invariant | Data:Hoste-Thistlethwaite Splice Base/QuantumInvariant/G2/1,0 |
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Hoste-Thistlethwaite Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Hoste-Thistlethwaite Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Hoste-Thistlethwaite Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Hoste-Thistlethwaite Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Hoste-Thistlethwaite Splice Base/Determinant, Data:Hoste-Thistlethwaite Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Hoste-Thistlethwaite Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Hoste-Thistlethwaite Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Hoste-Thistlethwaite Splice Base/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>}
Same Jones Polynomial (up to mirroring, ): {<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["Hoste-Thistlethwaite Splice Base"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Data:Hoste-Thistlethwaite Splice Base/Alexander Polynomial, Data:Hoste-Thistlethwaite Splice Base/Jones Polynomial } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]} |
Vassiliev invariants
V2 and V3: | (Data:Hoste-Thistlethwaite Splice Base/V 2, Data:Hoste-Thistlethwaite Splice Base/V 3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Hoste-Thistlethwaite Splice Base/Signature is the signature of Hoste-Thistlethwaite Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:Hoste-Thistlethwaite Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Hoste-Thistlethwaite Splice Base/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|