Torus Knot Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
(16 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- |
<!-- <* (* -->{{Splice Base Notice}}<!-- *) *> --> |
||
<!-- <* (* --><!-- You can ignore this warning; it's for people trying to edit individual knot pages--><!-- *) *> --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- <*K=Knot[ThisKnot]; {m,n}=List@@K;*> --> |
|||
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page. |
|||
<span id="top"></span> |
|||
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. --> |
|||
{{Knot Navigation Links|ext=jpg}} |
|||
<!-- <*{m,n}=List@@K;*> --> |
|||
{{Torus Knot Page| |
|||
{| align=left |
|||
m = <*m*> | |
|||
|- valign=top |
|||
n = <*n*> | |
|||
|[[Image:{{PAGENAME}}.jpg]] |
|||
KnotilusURL = <*KnotilusURL[K]*> | |
|||
|Visit [<*KnotilusURL[K]<>" "<>ThisKnot*>'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]! |
|||
braid_table = <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif", |
|||
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> | |
|||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/<*m*>.<*n*>.html <*ThisKnot*>'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
same_alexander = <* alex = Alexander[K][t]; |
|||
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; |
|||
{{:{{PAGENAME}} Quick Notes}} |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
|} |
|||
*> | |
|||
same_jones = <* J = Jones[K][q]; |
|||
<br style="clear:both" /> |
|||
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&], K]; |
|||
If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
*> | |
|||
khovanov_table = <*TabularKh[Kh[K][q, t], KnotSignature[K]+{1,-1}]*> | |
|||
===Knot presentations=== |
|||
coloured_jones_2 = <*ColouredJones[K, 2][q]*> | |
|||
coloured_jones_3 = <*ColouredJones[K, 3][q]*> | |
|||
{| |
|||
coloured_jones_4 = <*ColouredJones[K, 4][q]*> | |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
coloured_jones_5 = <*ColouredJones[K, 5][q]*> | |
|||
|style="padding-left: 1em;" | <*PD[K]*> |
|||
coloured_jones_6 = <*ColouredJones[K, 6][q]*> | |
|||
|- |
|||
coloured_jones_7 = <*ColouredJones[K, 7][q]*> |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
}} |
|||
|style="padding-left: 1em;" | <*List @@ GaussCode[K]*> |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | <*StringReplace[StringTake[ToString[DTCode[K]], {8, -2}], ","->""]*> |
|||
|} |
|||
{{Polynomial Invariants|name=<*ThisKnot*>}} |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
{| style="margin-left: 1em;" |
|||
|- |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
|style="padding-left: 1em;" | <*{Vassiliev[2][K], Vassiliev[3][K]}*> |
|||
|} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math><*s=KnotSignature[K]*> is the signature of <*ThisKnot*>. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
<center><*TabularKh[Kh[K][q, t], s+{1,-1}]*></center> |
|||
{{Computer Talk Header}} |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em"><*InOut[1]; KnotTheoryWelcomeMessage[]*></pre></td></tr> |
|||
<*InOut["Crossings[``]", K]*> |
|||
<*InOut["PD[``]", K]*> |
|||
<*InOut["GaussCode[``]", K]*> |
|||
<*InOut["BR[``]", K]*> |
|||
<*InOut["alex = Alexander[``][t]", K]*> |
|||
<*InOut["Conway[``][z]", K]*> |
|||
<*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> |
|||
<*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> |
|||
<*InOut["J=Jones[``][q]", K]*> |
|||
<*InOut[ |
|||
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]" |
|||
]*> |
|||
<* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> |
|||
<*InOut["A2Invariant[``][q]", K]*> |
|||
<*InOut["Kauffman[``][a, z]", K]*> |
|||
<*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> |
|||
<*InOut["Kh[``][q, t]", K]*> |
|||
</table> |
Latest revision as of 16:09, 18 September 2005
[[Image:Data:Torus Knot Splice Base/Previous Knot.jpg|80px|link=Data:Torus Knot Splice Base/Previous Knot]] |
[[Image:Data:Torus Knot Splice Base/Next Knot.jpg|80px|link=Data:Torus Knot Splice Base/Next Knot]] |
File:Torus Knot Splice Base.jpg | See other torus knots
Visit Torus Knot Splice Base at Knotilus! |
Edit Torus Knot Splice Base Quick Notes
|
Edit Torus Knot Splice Base Further Notes and Views
Knot presentations
Planar diagram presentation | Data:Torus Knot Splice Base/PD Presentation |
Gauss code | Data:Torus Knot Splice Base/Gauss Code |
Dowker-Thistlethwaite code | Data:Torus Knot Splice Base/DT Code |
Braid presentation | <* BraidPlot[CollapseBraid[BR[K]], Mode -> "Wiki", Images -> {"BraidPart0.gif", "BraidPart1.gif",
"BraidPart2.gif", "BraidPart3.gif", "BraidPart4.gif"}] *> |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Torus Knot Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Torus Knot Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Torus Knot Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Torus Knot Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Torus Knot Splice Base/Determinant, Data:Torus Knot Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Torus Knot Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Torus Knot Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Torus Knot Splice Base/Kauffman Polynomial |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>}
Same Jones Polynomial (up to mirroring, ): {<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["Torus Knot Splice Base"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Data:Torus Knot Splice Base/Alexander Polynomial, Data:Torus Knot Splice Base/Jones Polynomial } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{<* alex = Alexander[K][t];
others = DeleteCases[Select[AllKnots[], (alex === Alexander[#][t])&], K]; If[others === {}, "", StringJoin[("[["<>NameString[#]<>"]], ")& /@ others]] *>} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{<* J = Jones[K][q];
others = DeleteCases[Select[AllKnots[], (J === Jones[#][q]} |
Vassiliev invariants
V2 and V3: | (Data:Torus Knot Splice Base/V 2, Data:Torus Knot Splice Base/V 3) |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Torus Knot Splice Base/Signature is the signature of Torus Knot Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. | Data:Torus Knot Splice Base/KhovanovTable |
Integral Khovanov Homology
(db, data source) |
Data:Torus Knot Splice Base/Integral Khovanov Homology |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|