10 36: Difference between revisions
No edit summary |
No edit summary |
||
| (4 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 36 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,10,-5,3,-4,2,-6,9,-7,8,-10,5,-8,7,-9,6/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
{{Rolfsen Knot Page Header|n=10|k=36|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-3,1,-2,10,-5,3,-4,2,-6,9,-7,8,-10,5,-8,7,-9,6/goTop.html}} |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<br style="clear:both" /> |
|||
</table> | |
|||
braid_crossings = 12 | |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
braid_width = 5 | |
|||
braid_index = 5 | |
|||
{{Knot Presentations}} |
|||
same_alexander = [[K11a230]], [[K11n29]], | |
|||
{{3D Invariants}} |
|||
same_jones = | |
|||
{{4D Invariants}} |
|||
khovanov_table = <table border=1> |
|||
{{Polynomial Invariants}} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-8</td ><td width=6.66667%>-7</td ><td width=6.66667%>-6</td ><td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
||
| Line 41: | Line 41: | ||
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
||
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>-19</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^4-2 q^3+5 q-7+ q^{-1} +12 q^{-2} -18 q^{-3} +5 q^{-4} +22 q^{-5} -34 q^{-6} +9 q^{-7} +35 q^{-8} -47 q^{-9} +7 q^{-10} +44 q^{-11} -47 q^{-12} - q^{-13} +44 q^{-14} -36 q^{-15} -9 q^{-16} +36 q^{-17} -20 q^{-18} -13 q^{-19} +23 q^{-20} -6 q^{-21} -10 q^{-22} +9 q^{-23} -3 q^{-25} + q^{-26} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_3 = <math>q^9-2 q^8+q^6+4 q^5-5 q^4-3 q^3+3 q^2+8 q-6-6 q^{-1} +3 q^{-2} +7 q^{-3} -6 q^{-4} +3 q^{-5} +4 q^{-6} -10 q^{-7} -12 q^{-8} +28 q^{-9} +21 q^{-10} -42 q^{-11} -39 q^{-12} +57 q^{-13} +54 q^{-14} -58 q^{-15} -79 q^{-16} +63 q^{-17} +88 q^{-18} -48 q^{-19} -103 q^{-20} +39 q^{-21} +101 q^{-22} -16 q^{-23} -105 q^{-24} + q^{-25} +95 q^{-26} +22 q^{-27} -88 q^{-28} -40 q^{-29} +75 q^{-30} +55 q^{-31} -56 q^{-32} -68 q^{-33} +40 q^{-34} +67 q^{-35} -15 q^{-36} -67 q^{-37} +2 q^{-38} +52 q^{-39} +12 q^{-40} -38 q^{-41} -16 q^{-42} +22 q^{-43} +16 q^{-44} -12 q^{-45} -10 q^{-46} +4 q^{-47} +5 q^{-48} -3 q^{-50} + q^{-51} </math> | |
|||
coloured_jones_4 = <math>q^{16}-2 q^{15}+q^{13}+6 q^{11}-9 q^{10}-q^9+q^8+23 q^6-21 q^5-6 q^4-8 q^3-4 q^2+61 q-26-12 q^{-1} -41 q^{-2} -30 q^{-3} +123 q^{-4} - q^{-5} +2 q^{-6} -107 q^{-7} -115 q^{-8} +185 q^{-9} +80 q^{-10} +83 q^{-11} -187 q^{-12} -290 q^{-13} +190 q^{-14} +194 q^{-15} +264 q^{-16} -213 q^{-17} -516 q^{-18} +97 q^{-19} +260 q^{-20} +489 q^{-21} -141 q^{-22} -681 q^{-23} -42 q^{-24} +220 q^{-25} +644 q^{-26} -14 q^{-27} -717 q^{-28} -135 q^{-29} +114 q^{-30} +671 q^{-31} +88 q^{-32} -644 q^{-33} -150 q^{-34} -7 q^{-35} +599 q^{-36} +153 q^{-37} -509 q^{-38} -122 q^{-39} -122 q^{-40} +466 q^{-41} +192 q^{-42} -329 q^{-43} -63 q^{-44} -226 q^{-45} +284 q^{-46} +193 q^{-47} -135 q^{-48} +35 q^{-49} -275 q^{-50} +89 q^{-51} +121 q^{-52} +5 q^{-53} +154 q^{-54} -227 q^{-55} -47 q^{-56} +34 q^{-58} +222 q^{-59} -106 q^{-60} -70 q^{-61} -86 q^{-62} -18 q^{-63} +188 q^{-64} -6 q^{-65} -19 q^{-66} -83 q^{-67} -60 q^{-68} +95 q^{-69} +22 q^{-70} +20 q^{-71} -36 q^{-72} -47 q^{-73} +28 q^{-74} +8 q^{-75} +17 q^{-76} -5 q^{-77} -17 q^{-78} +4 q^{-79} +5 q^{-81} -3 q^{-83} + q^{-84} </math> | |
|||
<table> |
|||
coloured_jones_5 = | |
|||
<tr valign=top> |
|||
coloured_jones_6 = | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
coloured_jones_7 = | |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
computer_talk = |
|||
</tr> |
|||
<table> |
|||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
|||
<tr valign=top> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 36]]</nowiki></pre></td></tr> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 36]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 4, 2, 5], X[5, 10, 6, 11], X[3, 9, 4, 8], X[9, 3, 10, 2], |
|||
X[7, 16, 8, 17], X[11, 20, 12, 1], X[13, 18, 14, 19], |
X[7, 16, 8, 17], X[11, 20, 12, 1], X[13, 18, 14, 19], |
||
X[17, 14, 18, 15], X[19, 12, 20, 13], X[15, 6, 16, 7]]</nowiki></ |
X[17, 14, 18, 15], X[19, 12, 20, 13], X[15, 6, 16, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 36]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 36]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, |
|||
7, -9, 6]</nowiki></ |
7, -9, 6]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 36]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, -1, -2, 1, -2, -3, 2, -3, 4, -3, 4}]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 36]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 10, 16, 2, 20, 18, 6, 14, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 36]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[5, {-1, -1, -1, -2, 1, -2, -3, 2, -3, 4, -3, 4}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 12}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 36]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 36]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_36_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 36]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 2, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 36]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 13 2 |
|||
-19 - -- + -- + 13 t - 3 t |
-19 - -- + -- + 13 t - 3 t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 36]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + z - 3 z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 36]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 36], Knot[11, Alternating, 230], Knot[11, NonAlternating, 29]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
1 + z - 3 z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 36]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -9 3 4 6 8 8 8 6 4 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 36], Knot[11, Alternating, 230], Knot[11, NonAlternating, 29]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 36]], KnotSignature[Knot[10, 36]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{51, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 36]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -9 3 4 6 8 8 8 6 4 |
|||
-2 + q - -- + -- - -- + -- - -- + -- - -- + - + q |
-2 + q - -- + -- - -- + -- - -- + -- - -- + - + q |
||
8 7 6 5 4 3 2 q |
8 7 6 5 4 3 2 q |
||
q q q q q q q</nowiki></ |
q q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 36]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -28 -26 -24 -22 2 -16 2 -8 2 2 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 36]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 36]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -28 -26 -24 -22 2 -16 2 -8 2 2 4 |
|||
q - q - q + q - --- + q + --- + q - -- + -- + q |
q - q - q + q - --- + q + --- + q - -- + -- + q |
||
20 12 4 2 |
20 12 4 2 |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 36]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 9 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 36]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 2 4 2 6 2 8 2 2 4 |
|||
1 - a + 2 a - a + z - a z + a z - a z + a z - a z - |
|||
4 4 6 4 |
|||
a z - a z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 36]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 7 9 2 |
|||
1 + a + 2 a + a + a z + a z - 3 a z - 4 a z - a z - 2 z - |
1 + a + 2 a + a + a z + a z - 3 a z - 4 a z - a z - 2 z - |
||
| Line 106: | Line 212: | ||
9 7 4 8 6 8 8 8 5 9 7 9 |
9 7 4 8 6 8 8 8 5 9 7 9 |
||
3 a z + 2 a z + 5 a z + 3 a z + a z + a z</nowiki></ |
3 a z + 2 a z + 5 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 36]], Vassiliev[3][Knot[10, 36]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -2}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 36]], Vassiliev[3][Knot[10, 36]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 36]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 3 1 2 1 2 2 4 2 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ------ + |
||
3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 |
3 q 19 8 17 7 15 7 15 6 13 6 13 5 11 5 |
||
| Line 121: | Line 237: | ||
3 2 |
3 2 |
||
q t + q t</nowiki></ |
q t + q t</nowiki></code></td></tr> |
||
</table> |
</table> |
||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
[[Category:Knot Page]] |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 36], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -26 3 9 10 6 23 13 20 36 9 36 |
|||
-7 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
|||
25 23 22 21 20 19 18 17 16 15 |
|||
q q q q q q q q q q |
|||
44 -13 47 44 7 47 35 9 34 22 5 18 |
|||
--- - q - --- + --- + --- - -- + -- + -- - -- + -- + -- - -- + |
|||
14 12 11 10 9 8 7 6 5 4 3 |
|||
q q q q q q q q q q q |
|||
12 1 3 4 |
|||
-- + - + 5 q - 2 q + q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> }} |
|||
Latest revision as of 16:58, 1 September 2005
|
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 36's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
| Planar diagram presentation | X1425 X5,10,6,11 X3948 X9,3,10,2 X7,16,8,17 X11,20,12,1 X13,18,14,19 X17,14,18,15 X19,12,20,13 X15,6,16,7 |
| Gauss code | -1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6 |
| Dowker-Thistlethwaite code | 4 8 10 16 2 20 18 6 14 12 |
| Conway Notation | [24112] |
| Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||||
Length is 12, width is 5, Braid index is 5 |
|
![]() [{12, 6}, {5, 10}, {11, 7}, {6, 8}, {10, 12}, {7, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 9}, {8, 11}, {9, 1}] |
[edit Notes on presentations of 10 36]
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 36"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X5,10,6,11 X3948 X9,3,10,2 X7,16,8,17 X11,20,12,1 X13,18,14,19 X17,14,18,15 X19,12,20,13 X15,6,16,7 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -3, 1, -2, 10, -5, 3, -4, 2, -6, 9, -7, 8, -10, 5, -8, 7, -9, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 16 2 20 18 6 14 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[24112] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(5,\{-1,-1,-1,-2,1,-2,-3,2,-3,4,-3,4\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 5, 12, 5 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 6}, {5, 10}, {11, 7}, {6, 8}, {10, 12}, {7, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 9}, {8, 11}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+13 t-19+13 t^{-1} -3 t^{-2} } |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4+z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 51, -2 } |
| Jones polynomial | |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8-z^4 a^6-z^2 a^6-a^6-z^4 a^4+z^2 a^4+2 a^4-z^4 a^2-z^2 a^2-a^2+z^2+1} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-3 z^4 a^{10}+z^2 a^{10}+3 z^7 a^9-11 z^5 a^9+9 z^3 a^9-z a^9+3 z^8 a^8-10 z^6 a^8+8 z^4 a^8-2 z^2 a^8+z^9 a^7+2 z^7 a^7-15 z^5 a^7+16 z^3 a^7-4 z a^7+5 z^8 a^6-16 z^6 a^6+18 z^4 a^6-8 z^2 a^6+a^6+z^9 a^5+z^7 a^5-6 z^5 a^5+8 z^3 a^5-3 z a^5+2 z^8 a^4-3 z^6 a^4+6 z^4 a^4-6 z^2 a^4+2 a^4+2 z^7 a^3-2 z^3 a^3+z a^3+2 z^6 a^2-3 z^2 a^2+a^2+2 z^5 a-3 z^3 a+z a+z^4-2 z^2+1} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{28}-q^{26}-q^{24}+q^{22}-2 q^{20}+q^{16}+2 q^{12}+q^8-2 q^4+2 q^2+ q^{-4} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{142}-2 q^{140}+4 q^{138}-7 q^{136}+6 q^{134}-5 q^{132}-2 q^{130}+15 q^{128}-23 q^{126}+29 q^{124}-25 q^{122}+9 q^{120}+12 q^{118}-35 q^{116}+48 q^{114}-44 q^{112}+26 q^{110}+3 q^{108}-28 q^{106}+42 q^{104}-37 q^{102}+18 q^{100}+3 q^{98}-22 q^{96}+26 q^{94}-19 q^{92}-2 q^{90}+25 q^{88}-35 q^{86}+33 q^{84}-18 q^{82}-11 q^{80}+34 q^{78}-52 q^{76}+52 q^{74}-38 q^{72}+10 q^{70}+24 q^{68}-48 q^{66}+54 q^{64}-41 q^{62}+18 q^{60}+9 q^{58}-27 q^{56}+30 q^{54}-18 q^{52}+5 q^{50}+15 q^{48}-20 q^{46}+15 q^{44}+q^{42}-16 q^{40}+27 q^{38}-26 q^{36}+18 q^{34}-5 q^{32}-10 q^{30}+20 q^{28}-26 q^{26}+26 q^{24}-19 q^{22}+9 q^{20}-11 q^{16}+16 q^{14}-20 q^{12}+19 q^{10}-12 q^8+5 q^6+3 q^4-8 q^2+11-9 q^{-2} +8 q^{-4} -3 q^{-6} +2 q^{-10} -3 q^{-12} +3 q^{-14} - q^{-16} + q^{-18} } |
A1 Invariants.
| Weight | Invariant |
|---|---|
| 1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{19}-2 q^{17}+q^{15}-2 q^{13}+2 q^{11}+2 q^5-2 q^3+2 q- q^{-1} + q^{-3} } |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{54}-2 q^{52}-2 q^{50}+6 q^{48}-q^{46}-7 q^{44}+7 q^{42}+4 q^{40}-10 q^{38}+3 q^{36}+7 q^{34}-9 q^{32}-q^{30}+7 q^{28}-4 q^{26}-4 q^{24}+4 q^{22}+4 q^{20}-5 q^{18}-3 q^{16}+10 q^{14}-3 q^{12}-7 q^{10}+9 q^8-q^6-5 q^4+6 q^2-1-2 q^{-2} +3 q^{-4} - q^{-6} - q^{-8} + q^{-10} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{105}-2 q^{103}-2 q^{101}+3 q^{99}+6 q^{97}-q^{95}-13 q^{93}-2 q^{91}+16 q^{89}+10 q^{87}-16 q^{85}-20 q^{83}+10 q^{81}+28 q^{79}-q^{77}-28 q^{75}-13 q^{73}+25 q^{71}+24 q^{69}-17 q^{67}-29 q^{65}+6 q^{63}+34 q^{61}+2 q^{59}-31 q^{57}-11 q^{55}+30 q^{53}+13 q^{51}-25 q^{49}-19 q^{47}+19 q^{45}+21 q^{43}-11 q^{41}-24 q^{39}+24 q^{35}+14 q^{33}-20 q^{31}-26 q^{29}+14 q^{27}+30 q^{25}-3 q^{23}-32 q^{21}-5 q^{19}+27 q^{17}+10 q^{15}-15 q^{13}-9 q^{11}+8 q^9+7 q^7-2 q^5-2 q^3-q- q^{-1} +2 q^{-3} +3 q^{-5} - q^{-7} -3 q^{-9} +3 q^{-13} - q^{-17} - q^{-19} + q^{-21} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{172}-2 q^{170}-2 q^{168}+3 q^{166}+3 q^{164}+6 q^{162}-8 q^{160}-13 q^{158}-q^{156}+7 q^{154}+31 q^{152}+q^{150}-30 q^{148}-27 q^{146}-13 q^{144}+54 q^{142}+41 q^{140}-6 q^{138}-45 q^{136}-73 q^{134}+20 q^{132}+62 q^{130}+59 q^{128}+8 q^{126}-92 q^{124}-58 q^{122}-6 q^{120}+80 q^{118}+103 q^{116}-18 q^{114}-86 q^{112}-115 q^{110}+6 q^{108}+142 q^{106}+94 q^{104}-25 q^{102}-165 q^{100}-93 q^{98}+102 q^{96}+151 q^{94}+53 q^{92}-141 q^{90}-142 q^{88}+40 q^{86}+144 q^{84}+85 q^{82}-95 q^{80}-134 q^{78}-q^{76}+114 q^{74}+86 q^{72}-49 q^{70}-114 q^{68}-42 q^{66}+79 q^{64}+94 q^{62}+21 q^{60}-81 q^{58}-108 q^{56}-2 q^{54}+91 q^{52}+127 q^{50}-155 q^{46}-115 q^{44}+24 q^{42}+189 q^{40}+117 q^{38}-108 q^{36}-174 q^{34}-81 q^{32}+145 q^{30}+171 q^{28}-10 q^{26}-124 q^{24}-129 q^{22}+46 q^{20}+126 q^{18}+45 q^{16}-36 q^{14}-98 q^{12}-13 q^{10}+53 q^8+39 q^6+14 q^4-48 q^2-22+11 q^{-2} +17 q^{-4} +22 q^{-6} -16 q^{-8} -12 q^{-10} -3 q^{-12} +2 q^{-14} +14 q^{-16} -3 q^{-18} -3 q^{-20} -3 q^{-22} -2 q^{-24} +5 q^{-26} - q^{-32} - q^{-34} + q^{-36} } |
| 5 |
A2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 | |
| 1,1 | |
| 2,0 |
A3 Invariants.
| Weight | Invariant |
|---|---|
| 0,1,0 | |
| 1,0,0 |
B2 Invariants.
| Weight | Invariant |
|---|---|
| 0,1 | |
| 1,0 |
G2 Invariants.
| Weight | Invariant |
|---|---|
| 1,0 |
.
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 36"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 t^2+13 t-19+13 t^{-1} -3 t^{-2} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -3 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 51, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^8-z^4 a^6-z^2 a^6-a^6-z^4 a^4+z^2 a^4+2 a^4-z^4 a^2-z^2 a^2-a^2+z^2+1} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{10}-3 z^4 a^{10}+z^2 a^{10}+3 z^7 a^9-11 z^5 a^9+9 z^3 a^9-z a^9+3 z^8 a^8-10 z^6 a^8+8 z^4 a^8-2 z^2 a^8+z^9 a^7+2 z^7 a^7-15 z^5 a^7+16 z^3 a^7-4 z a^7+5 z^8 a^6-16 z^6 a^6+18 z^4 a^6-8 z^2 a^6+a^6+z^9 a^5+z^7 a^5-6 z^5 a^5+8 z^3 a^5-3 z a^5+2 z^8 a^4-3 z^6 a^4+6 z^4 a^4-6 z^2 a^4+2 a^4+2 z^7 a^3-2 z^3 a^3+z a^3+2 z^6 a^2-3 z^2 a^2+a^2+2 z^5 a-3 z^3 a+z a+z^4-2 z^2+1} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a230, K11n29,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 36"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a230, K11n29,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 36. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
| Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
| 2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^4-2 q^3+5 q-7+ q^{-1} +12 q^{-2} -18 q^{-3} +5 q^{-4} +22 q^{-5} -34 q^{-6} +9 q^{-7} +35 q^{-8} -47 q^{-9} +7 q^{-10} +44 q^{-11} -47 q^{-12} - q^{-13} +44 q^{-14} -36 q^{-15} -9 q^{-16} +36 q^{-17} -20 q^{-18} -13 q^{-19} +23 q^{-20} -6 q^{-21} -10 q^{-22} +9 q^{-23} -3 q^{-25} + q^{-26} } |
| 3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-2 q^8+q^6+4 q^5-5 q^4-3 q^3+3 q^2+8 q-6-6 q^{-1} +3 q^{-2} +7 q^{-3} -6 q^{-4} +3 q^{-5} +4 q^{-6} -10 q^{-7} -12 q^{-8} +28 q^{-9} +21 q^{-10} -42 q^{-11} -39 q^{-12} +57 q^{-13} +54 q^{-14} -58 q^{-15} -79 q^{-16} +63 q^{-17} +88 q^{-18} -48 q^{-19} -103 q^{-20} +39 q^{-21} +101 q^{-22} -16 q^{-23} -105 q^{-24} + q^{-25} +95 q^{-26} +22 q^{-27} -88 q^{-28} -40 q^{-29} +75 q^{-30} +55 q^{-31} -56 q^{-32} -68 q^{-33} +40 q^{-34} +67 q^{-35} -15 q^{-36} -67 q^{-37} +2 q^{-38} +52 q^{-39} +12 q^{-40} -38 q^{-41} -16 q^{-42} +22 q^{-43} +16 q^{-44} -12 q^{-45} -10 q^{-46} +4 q^{-47} +5 q^{-48} -3 q^{-50} + q^{-51} } |
| 4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{16}-2 q^{15}+q^{13}+6 q^{11}-9 q^{10}-q^9+q^8+23 q^6-21 q^5-6 q^4-8 q^3-4 q^2+61 q-26-12 q^{-1} -41 q^{-2} -30 q^{-3} +123 q^{-4} - q^{-5} +2 q^{-6} -107 q^{-7} -115 q^{-8} +185 q^{-9} +80 q^{-10} +83 q^{-11} -187 q^{-12} -290 q^{-13} +190 q^{-14} +194 q^{-15} +264 q^{-16} -213 q^{-17} -516 q^{-18} +97 q^{-19} +260 q^{-20} +489 q^{-21} -141 q^{-22} -681 q^{-23} -42 q^{-24} +220 q^{-25} +644 q^{-26} -14 q^{-27} -717 q^{-28} -135 q^{-29} +114 q^{-30} +671 q^{-31} +88 q^{-32} -644 q^{-33} -150 q^{-34} -7 q^{-35} +599 q^{-36} +153 q^{-37} -509 q^{-38} -122 q^{-39} -122 q^{-40} +466 q^{-41} +192 q^{-42} -329 q^{-43} -63 q^{-44} -226 q^{-45} +284 q^{-46} +193 q^{-47} -135 q^{-48} +35 q^{-49} -275 q^{-50} +89 q^{-51} +121 q^{-52} +5 q^{-53} +154 q^{-54} -227 q^{-55} -47 q^{-56} +34 q^{-58} +222 q^{-59} -106 q^{-60} -70 q^{-61} -86 q^{-62} -18 q^{-63} +188 q^{-64} -6 q^{-65} -19 q^{-66} -83 q^{-67} -60 q^{-68} +95 q^{-69} +22 q^{-70} +20 q^{-71} -36 q^{-72} -47 q^{-73} +28 q^{-74} +8 q^{-75} +17 q^{-76} -5 q^{-77} -17 q^{-78} +4 q^{-79} +5 q^{-81} -3 q^{-83} + q^{-84} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|




