10 153: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 153 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-9,10,-2,-5,6,9,-3,-4,8,-7,5,-6,4,-8,7/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
{{Knot Navigation Links|ext=gif}}
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>

<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr>
{{Rolfsen Knot Page Header|n=10|k=153|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-9,10,-2,-5,6,9,-3,-4,8,-7,5,-6,4,-8,7/goTop.html}}
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>

</table> |
<br style="clear:both" />
braid_crossings = 11 |

braid_width = 4 |
{{:{{PAGENAME}} Further Notes and Views}}
braid_index = 4 |

same_alexander = |
{{Knot Presentations}}
same_jones = |
{{3D Invariants}}
khovanov_table = <table border=1>
{{4D Invariants}}
{{Polynomial Invariants}}
{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
Line 40: Line 39:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{13}-q^{12}-q^{11}+2 q^{10}-q^9-q^8+q^7-2 q^6+2 q^5+q^4-5 q^3+4 q^2+3 q-6+4 q^{-1} +4 q^{-2} -7 q^{-3} +4 q^{-4} +3 q^{-5} -5 q^{-6} + q^{-7} +2 q^{-8} - q^{-9} -2 q^{-10} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} </math> |
{{Computer Talk Header}}
coloured_jones_3 = <math>-q^{27}+q^{26}+q^{25}-2 q^{23}+2 q^{21}-q^{19}+2 q^{17}-3 q^{16}-2 q^{15}+3 q^{14}+5 q^{13}-3 q^{12}-7 q^{11}+7 q^9+2 q^8-4 q^7-6 q^6+q^5+6 q^4+4 q^3-5 q^2-8 q+7+10 q^{-1} -4 q^{-2} -12 q^{-3} +5 q^{-4} +12 q^{-5} -4 q^{-6} -13 q^{-7} +5 q^{-8} +13 q^{-9} -4 q^{-10} -13 q^{-11} +2 q^{-12} +11 q^{-13} + q^{-14} -9 q^{-15} -4 q^{-16} +5 q^{-17} +4 q^{-18} - q^{-19} -3 q^{-20} -2 q^{-21} + q^{-22} +2 q^{-23} +2 q^{-24} - q^{-25} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} </math> |

coloured_jones_4 = <math>q^{46}-q^{45}-q^{44}+3 q^{41}-q^{40}-q^{39}-q^{38}-q^{37}+3 q^{36}-q^{35}-q^{33}+2 q^{32}+3 q^{31}-3 q^{30}-3 q^{29}-5 q^{28}+5 q^{27}+6 q^{26}+3 q^{25}-q^{24}-10 q^{23}-q^{22}+4 q^{20}+6 q^{19}+q^{18}+2 q^{17}-8 q^{16}-10 q^{15}-3 q^{14}+8 q^{13}+17 q^{12}+7 q^{11}-17 q^{10}-22 q^9-5 q^8+20 q^7+32 q^6-5 q^5-29 q^4-24 q^3+7 q^2+48 q+10-28 q^{-1} -34 q^{-2} -4 q^{-3} +54 q^{-4} +14 q^{-5} -26 q^{-6} -36 q^{-7} -7 q^{-8} +55 q^{-9} +14 q^{-10} -26 q^{-11} -35 q^{-12} -8 q^{-13} +53 q^{-14} +16 q^{-15} -21 q^{-16} -36 q^{-17} -15 q^{-18} +44 q^{-19} +21 q^{-20} -5 q^{-21} -29 q^{-22} -26 q^{-23} +19 q^{-24} +19 q^{-25} +16 q^{-26} -9 q^{-27} -23 q^{-28} -4 q^{-29} +2 q^{-30} +15 q^{-31} +7 q^{-32} -4 q^{-33} -5 q^{-34} -6 q^{-35} +3 q^{-37} +3 q^{-38} +2 q^{-39} + q^{-40} -3 q^{-41} -2 q^{-42} - q^{-43} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} </math> |
<table>
coloured_jones_5 = <math>-q^{70}+q^{69}+q^{68}-q^{65}-2 q^{64}+2 q^{62}+q^{61}+q^{60}-q^{59}-q^{58}-q^{57}+q^{55}+q^{54}-3 q^{53}-q^{52}+2 q^{51}+2 q^{50}+4 q^{49}+2 q^{48}-5 q^{47}-7 q^{46}-3 q^{45}+5 q^{43}+8 q^{42}+4 q^{41}-q^{40}-4 q^{39}-5 q^{38}-6 q^{37}-3 q^{36}+4 q^{34}+11 q^{33}+11 q^{32}+6 q^{31}-8 q^{30}-19 q^{29}-20 q^{28}-6 q^{27}+13 q^{26}+31 q^{25}+26 q^{24}+2 q^{23}-23 q^{22}-41 q^{21}-29 q^{20}+5 q^{19}+37 q^{18}+49 q^{17}+25 q^{16}-20 q^{15}-55 q^{14}-53 q^{13}-14 q^{12}+49 q^{11}+74 q^{10}+40 q^9-23 q^8-80 q^7-75 q^6+4 q^5+83 q^4+87 q^3+22 q^2-72 q-108-33 q^{-1} +73 q^{-2} +106 q^{-3} +47 q^{-4} -66 q^{-5} -117 q^{-6} -46 q^{-7} +68 q^{-8} +111 q^{-9} +51 q^{-10} -65 q^{-11} -118 q^{-12} -47 q^{-13} +68 q^{-14} +112 q^{-15} +50 q^{-16} -65 q^{-17} -118 q^{-18} -48 q^{-19} +67 q^{-20} +113 q^{-21} +52 q^{-22} -59 q^{-23} -114 q^{-24} -60 q^{-25} +48 q^{-26} +106 q^{-27} +70 q^{-28} -25 q^{-29} -92 q^{-30} -79 q^{-31} -5 q^{-32} +67 q^{-33} +78 q^{-34} +33 q^{-35} -32 q^{-36} -65 q^{-37} -49 q^{-38} -4 q^{-39} +39 q^{-40} +48 q^{-41} +29 q^{-42} -8 q^{-43} -33 q^{-44} -32 q^{-45} -16 q^{-46} +10 q^{-47} +25 q^{-48} +21 q^{-49} +6 q^{-50} -5 q^{-51} -17 q^{-52} -13 q^{-53} - q^{-54} +2 q^{-55} +7 q^{-56} +8 q^{-57} +2 q^{-58} -2 q^{-59} - q^{-60} -4 q^{-61} -4 q^{-62} + q^{-64} +2 q^{-65} +2 q^{-66} +2 q^{-67} - q^{-68} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} </math> |
<tr valign=top>
coloured_jones_6 = <math>q^{99}-q^{98}-q^{97}+q^{94}+3 q^{92}-q^{91}-2 q^{90}-q^{89}-q^{88}+4 q^{85}-q^{84}-2 q^{80}+q^{79}+4 q^{78}-4 q^{77}-2 q^{76}-2 q^{75}-3 q^{73}+6 q^{72}+9 q^{71}+q^{70}-q^{69}-2 q^{68}-5 q^{67}-13 q^{66}+3 q^{64}+3 q^{63}+4 q^{62}+10 q^{61}+8 q^{60}-5 q^{59}-3 q^{57}-11 q^{56}-16 q^{55}-6 q^{54}+3 q^{53}+5 q^{52}+17 q^{51}+28 q^{50}+16 q^{49}-5 q^{48}-20 q^{47}-25 q^{46}-38 q^{45}-24 q^{44}+16 q^{43}+33 q^{42}+46 q^{41}+36 q^{40}+30 q^{39}-28 q^{38}-59 q^{37}-54 q^{36}-50 q^{35}-8 q^{34}+32 q^{33}+99 q^{32}+69 q^{31}+44 q^{30}-8 q^{29}-84 q^{28}-117 q^{27}-106 q^{26}+8 q^{25}+56 q^{24}+146 q^{23}+147 q^{22}+61 q^{21}-73 q^{20}-184 q^{19}-159 q^{18}-119 q^{17}+72 q^{16}+200 q^{15}+236 q^{14}+110 q^{13}-85 q^{12}-214 q^{11}-287 q^{10}-100 q^9+110 q^8+293 q^7+262 q^6+75 q^5-165 q^4-352 q^3-225 q^2-q+276+325 q^{-1} +175 q^{-2} -116 q^{-3} -361 q^{-4} -273 q^{-5} -54 q^{-6} +258 q^{-7} +341 q^{-8} +208 q^{-9} -102 q^{-10} -362 q^{-11} -281 q^{-12} -65 q^{-13} +255 q^{-14} +343 q^{-15} +213 q^{-16} -101 q^{-17} -363 q^{-18} -282 q^{-19} -65 q^{-20} +255 q^{-21} +343 q^{-22} +213 q^{-23} -102 q^{-24} -359 q^{-25} -285 q^{-26} -70 q^{-27} +250 q^{-28} +346 q^{-29} +226 q^{-30} -93 q^{-31} -343 q^{-32} -298 q^{-33} -106 q^{-34} +208 q^{-35} +337 q^{-36} +270 q^{-37} -19 q^{-38} -269 q^{-39} -305 q^{-40} -194 q^{-41} +69 q^{-42} +253 q^{-43} +300 q^{-44} +121 q^{-45} -82 q^{-46} -215 q^{-47} -241 q^{-48} -116 q^{-49} +55 q^{-50} +195 q^{-51} +173 q^{-52} +109 q^{-53} -15 q^{-54} -123 q^{-55} -155 q^{-56} -97 q^{-57} - q^{-58} +51 q^{-59} +109 q^{-60} +92 q^{-61} +39 q^{-62} -32 q^{-63} -54 q^{-64} -64 q^{-65} -58 q^{-66} -4 q^{-67} +28 q^{-68} +47 q^{-69} +33 q^{-70} +30 q^{-71} - q^{-72} -27 q^{-73} -28 q^{-74} -22 q^{-75} -8 q^{-76} +18 q^{-78} +16 q^{-79} +10 q^{-80} +3 q^{-81} -2 q^{-82} -7 q^{-83} -8 q^{-84} -5 q^{-85} -2 q^{-86} + q^{-87} +2 q^{-88} +4 q^{-89} +3 q^{-90} +3 q^{-91} - q^{-92} - q^{-93} -2 q^{-94} -2 q^{-95} -2 q^{-96} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
coloured_jones_7 = |
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
computer_talk =
</tr>
<table>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 153]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>10</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 153]]</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[13, 18, 14, 19],
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 153]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[13, 18, 14, 19],
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1],
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1],
X[19, 14, 20, 15], X[6, 12, 7, 11], X[2, 8, 3, 7]]</nowiki></pre></td></tr>
X[19, 14, 20, 15], X[6, 12, 7, 11], X[2, 8, 3, 7]]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 153]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 153]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6,
4, -8, 7]</nowiki></pre></td></tr>
4, -8, 7]</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 153]]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[4, {-1, -1, -1, -2, -1, -1, 3, 2, 2, 2, 3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 153]][t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 -2 1 2 3
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 153]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, -16, 6, -18, -20, -10, -14]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 153]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -2, -1, -1, 3, 2, 2, 2, 3}]</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 153]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 153]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_153_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 153]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 153]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 -2 1 2 3
3 + t - t - - - t - t + t
3 + t - t - - - t - t + t
t</nowiki></pre></td></tr>
t</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 153]][z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 4 z + 5 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 153]][z]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 153]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 153]], KnotSignature[Knot[10, 153]]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 0}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6
1 + 4 z + 5 z + z</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[10, 153]][q]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -4 -3 -2 2 3 4
<table><tr align=left>
1 - q + q - q + q + q - q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 153]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 153]][q]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 -10 2 2 2 8 10 12
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 153]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 153]], KnotSignature[Knot[10, 153]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 153]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 -4 -3 -2 2 3 4
1 - q + q - q + q + q - q + q - q</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 153]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 153]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -12 -10 2 2 2 8 10 12
3 - q - q - q + -- + -- + 2 q - q - q - q
3 - q - q - q + -- + -- + 2 q - q - q - q
4 2
4 2
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 153]][a, z]</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 2 4 5 z 10 z 3 5 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 153]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
3 2 4 2 4 z 2 2 4 2 4 z 6
6 - -- - a - a + 10 z - ---- - a z - a z + 6 z - -- + z
2 2 2
a a a</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 153]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 2 4 5 z 10 z 3 5 2
6 + -- + a - a - --- - ---- - 6 a z + 2 a z + 3 a z - 12 z -
6 + -- + a - a - --- - ---- - 6 a z + 2 a z + 3 a z - 12 z -
2 3 a
2 3 a
Line 107: Line 212:
a z - 7 z - ---- + a z + -- + ---- + a z + z + --
a z - 7 z - ---- + a z + -- + ---- + a z + z + --
2 3 a 2
2 3 a 2
a a a</nowiki></pre></td></tr>
a a a</nowiki></code></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 153]], Vassiliev[3][Knot[10, 153]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, -1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 153]][q, t]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3 1 1 1 1 1 1 1 t
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 153]], Vassiliev[3][Knot[10, 153]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, -1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 153]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 1 1 1 1 1 1 t
- + q + ------ + ----- + ----- + ----- + ----- + ---- + --- + - +
- + q + ------ + ----- + ----- + ----- + ----- + ---- + --- + - +
q 11 5 7 4 7 3 5 2 3 2 5 q t q
q 11 5 7 4 7 3 5 2 3 2 5 q t q
Line 117: Line 232:
3 2 3 2 5 3 5 4 9 5
3 2 3 2 5 3 5 4 9 5
q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t + q t + q t + q t</nowiki></code></td></tr>
</table>
</table>
<table><tr align=left>

<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
[[Category:Knot Page]]
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 153], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 -14 -13 2 2 -9 2 -7 5 3 4
-6 + q - q - q + --- - --- - q + -- + q - -- + -- + -- -
12 10 8 6 5 4
q q q q q q
7 4 4 2 3 4 5 6 7 8 9
-- + -- + - + 3 q + 4 q - 5 q + q + 2 q - 2 q + q - q - q +
3 2 q
q q
10 11 12 13
2 q - q - q + q</nowiki></code></td></tr>
</table> }}

Latest revision as of 17:04, 1 September 2005

10 152.gif

10_152

10 154.gif

10_154

10 153.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 153's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 153 at Knotilus!

10_153 is not -colourable for any . See The Determinant and the Signature.

Knot presentations

Planar diagram presentation X4251 X8493 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X2837
Gauss code 1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7
Dowker-Thistlethwaite code 4 8 12 2 -16 6 -18 -20 -10 -14
Conway Notation [(3,2)-(21,2)]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif

Length is 11, width is 4,

Braid index is 4

10 153 ML.gif 10 153 AP.gif
[{3, 9}, {2, 4}, {1, 3}, {10, 5}, {9, 2}, {11, 6}, {5, 7}, {4, 10}, {6, 8}, {7, 11}, {8, 1}]

[edit Notes on presentations of 10 153]

Knot 10_153.
A graph, knot 10_153.
A part of a knot and a part of a graph.

Three dimensional invariants

Symmetry type Chiral
Unknotting number 2
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-4]
Hyperbolic Volume 7.37434
A-Polynomial See Data:10 153/A-polynomial

[edit Notes for 10 153's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 153's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
9          1-1
7           0
5        11 0
3      11   0
1     1 1   2
-1    131    1
-3   1       1
-5   11      0
-7 11        0
-9           0
-111          -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials