10 79: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 79 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,3,-1,9,-2,5,-6,10,-3,4,-8,7,-5,6,-4,8,-7/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=79|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,3,-1,9,-2,5,-6,10,-3,4,-8,7,-5,6,-4,8,-7/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
Line 71: Line 39:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{15}-2 q^{14}+q^{13}+5 q^{12}-11 q^{11}+2 q^{10}+21 q^9-30 q^8-5 q^7+53 q^6-48 q^5-24 q^4+85 q^3-53 q^2-44 q+99-44 q^{-1} -53 q^{-2} +85 q^{-3} -24 q^{-4} -48 q^{-5} +53 q^{-6} -5 q^{-7} -30 q^{-8} +21 q^{-9} +2 q^{-10} -11 q^{-11} +5 q^{-12} + q^{-13} -2 q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>-q^{30}+2 q^{29}-q^{28}-q^{27}-q^{26}+7 q^{25}-3 q^{24}-10 q^{23}+q^{22}+27 q^{21}-4 q^{20}-43 q^{19}-13 q^{18}+80 q^{17}+31 q^{16}-107 q^{15}-80 q^{14}+135 q^{13}+143 q^{12}-152 q^{11}-212 q^{10}+143 q^9+291 q^8-131 q^7-348 q^6+90 q^5+412 q^4-67 q^3-427 q^2+12 q+455+12 q^{-1} -427 q^{-2} -67 q^{-3} +412 q^{-4} +90 q^{-5} -348 q^{-6} -131 q^{-7} +291 q^{-8} +143 q^{-9} -212 q^{-10} -152 q^{-11} +143 q^{-12} +135 q^{-13} -80 q^{-14} -107 q^{-15} +31 q^{-16} +80 q^{-17} -13 q^{-18} -43 q^{-19} -4 q^{-20} +27 q^{-21} + q^{-22} -10 q^{-23} -3 q^{-24} +7 q^{-25} - q^{-26} - q^{-27} - q^{-28} +2 q^{-29} - q^{-30} </math> |
{{Display Coloured Jones|J2=<math>q^{15}-2 q^{14}+q^{13}+5 q^{12}-11 q^{11}+2 q^{10}+21 q^9-30 q^8-5 q^7+53 q^6-48 q^5-24 q^4+85 q^3-53 q^2-44 q+99-44 q^{-1} -53 q^{-2} +85 q^{-3} -24 q^{-4} -48 q^{-5} +53 q^{-6} -5 q^{-7} -30 q^{-8} +21 q^{-9} +2 q^{-10} -11 q^{-11} +5 q^{-12} + q^{-13} -2 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+2 q^{29}-q^{28}-q^{27}-q^{26}+7 q^{25}-3 q^{24}-10 q^{23}+q^{22}+27 q^{21}-4 q^{20}-43 q^{19}-13 q^{18}+80 q^{17}+31 q^{16}-107 q^{15}-80 q^{14}+135 q^{13}+143 q^{12}-152 q^{11}-212 q^{10}+143 q^9+291 q^8-131 q^7-348 q^6+90 q^5+412 q^4-67 q^3-427 q^2+12 q+455+12 q^{-1} -427 q^{-2} -67 q^{-3} +412 q^{-4} +90 q^{-5} -348 q^{-6} -131 q^{-7} +291 q^{-8} +143 q^{-9} -212 q^{-10} -152 q^{-11} +143 q^{-12} +135 q^{-13} -80 q^{-14} -107 q^{-15} +31 q^{-16} +80 q^{-17} -13 q^{-18} -43 q^{-19} -4 q^{-20} +27 q^{-21} + q^{-22} -10 q^{-23} -3 q^{-24} +7 q^{-25} - q^{-26} - q^{-27} - q^{-28} +2 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-2 q^{49}+q^{48}+q^{47}-3 q^{46}+5 q^{45}-7 q^{44}+5 q^{43}+6 q^{42}-16 q^{41}+11 q^{40}-18 q^{39}+23 q^{38}+33 q^{37}-47 q^{36}-5 q^{35}-70 q^{34}+66 q^{33}+141 q^{32}-41 q^{31}-50 q^{30}-274 q^{29}+32 q^{28}+353 q^{27}+159 q^{26}+37 q^{25}-655 q^{24}-296 q^{23}+451 q^{22}+578 q^{21}+521 q^{20}-952 q^{19}-932 q^{18}+150 q^{17}+937 q^{16}+1362 q^{15}-873 q^{14}-1548 q^{13}-507 q^{12}+973 q^{11}+2200 q^{10}-474 q^9-1867 q^8-1182 q^7+733 q^6+2731 q^5-11 q^4-1872 q^3-1645 q^2+386 q+2903+386 q^{-1} -1645 q^{-2} -1872 q^{-3} -11 q^{-4} +2731 q^{-5} +733 q^{-6} -1182 q^{-7} -1867 q^{-8} -474 q^{-9} +2200 q^{-10} +973 q^{-11} -507 q^{-12} -1548 q^{-13} -873 q^{-14} +1362 q^{-15} +937 q^{-16} +150 q^{-17} -932 q^{-18} -952 q^{-19} +521 q^{-20} +578 q^{-21} +451 q^{-22} -296 q^{-23} -655 q^{-24} +37 q^{-25} +159 q^{-26} +353 q^{-27} +32 q^{-28} -274 q^{-29} -50 q^{-30} -41 q^{-31} +141 q^{-32} +66 q^{-33} -70 q^{-34} -5 q^{-35} -47 q^{-36} +33 q^{-37} +23 q^{-38} -18 q^{-39} +11 q^{-40} -16 q^{-41} +6 q^{-42} +5 q^{-43} -7 q^{-44} +5 q^{-45} -3 q^{-46} + q^{-47} + q^{-48} -2 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+2 q^{74}-q^{73}-q^{72}+3 q^{71}-q^{70}-5 q^{69}+5 q^{68}-4 q^{66}+10 q^{65}+3 q^{64}-19 q^{63}-2 q^{62}-q^{61}+36 q^{59}+33 q^{58}-30 q^{57}-58 q^{56}-65 q^{55}-26 q^{54}+115 q^{53}+184 q^{52}+82 q^{51}-116 q^{50}-321 q^{49}-320 q^{48}+55 q^{47}+496 q^{46}+623 q^{45}+264 q^{44}-531 q^{43}-1137 q^{42}-802 q^{41}+331 q^{40}+1510 q^{39}+1710 q^{38}+371 q^{37}-1752 q^{36}-2759 q^{35}-1527 q^{34}+1389 q^{33}+3772 q^{32}+3240 q^{31}-423 q^{30}-4456 q^{29}-5166 q^{28}-1245 q^{27}+4500 q^{26}+7083 q^{25}+3498 q^{24}-3903 q^{23}-8681 q^{22}-5933 q^{21}+2616 q^{20}+9688 q^{19}+8440 q^{18}-956 q^{17}-10187 q^{16}-10475 q^{15}-962 q^{14}+10093 q^{13}+12223 q^{12}+2709 q^{11}-9719 q^{10}-13272 q^9-4355 q^8+9034 q^7+14136 q^6+5574 q^5-8372 q^4-14366 q^3-6711 q^2+7511 q+14645+7511 q^{-1} -6711 q^{-2} -14366 q^{-3} -8372 q^{-4} +5574 q^{-5} +14136 q^{-6} +9034 q^{-7} -4355 q^{-8} -13272 q^{-9} -9719 q^{-10} +2709 q^{-11} +12223 q^{-12} +10093 q^{-13} -962 q^{-14} -10475 q^{-15} -10187 q^{-16} -956 q^{-17} +8440 q^{-18} +9688 q^{-19} +2616 q^{-20} -5933 q^{-21} -8681 q^{-22} -3903 q^{-23} +3498 q^{-24} +7083 q^{-25} +4500 q^{-26} -1245 q^{-27} -5166 q^{-28} -4456 q^{-29} -423 q^{-30} +3240 q^{-31} +3772 q^{-32} +1389 q^{-33} -1527 q^{-34} -2759 q^{-35} -1752 q^{-36} +371 q^{-37} +1710 q^{-38} +1510 q^{-39} +331 q^{-40} -802 q^{-41} -1137 q^{-42} -531 q^{-43} +264 q^{-44} +623 q^{-45} +496 q^{-46} +55 q^{-47} -320 q^{-48} -321 q^{-49} -116 q^{-50} +82 q^{-51} +184 q^{-52} +115 q^{-53} -26 q^{-54} -65 q^{-55} -58 q^{-56} -30 q^{-57} +33 q^{-58} +36 q^{-59} - q^{-61} -2 q^{-62} -19 q^{-63} +3 q^{-64} +10 q^{-65} -4 q^{-66} +5 q^{-68} -5 q^{-69} - q^{-70} +3 q^{-71} - q^{-72} - q^{-73} +2 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-2 q^{104}+q^{103}+q^{102}-3 q^{101}+q^{100}+q^{99}+7 q^{98}-10 q^{97}-2 q^{96}+9 q^{95}-11 q^{94}+2 q^{93}+7 q^{92}+28 q^{91}-24 q^{90}-25 q^{89}+15 q^{88}-34 q^{87}+35 q^{85}+112 q^{84}-13 q^{83}-74 q^{82}-26 q^{81}-167 q^{80}-88 q^{79}+64 q^{78}+381 q^{77}+228 q^{76}+32 q^{75}-53 q^{74}-602 q^{73}-662 q^{72}-338 q^{71}+671 q^{70}+970 q^{69}+1015 q^{68}+792 q^{67}-858 q^{66}-2037 q^{65}-2377 q^{64}-558 q^{63}+1092 q^{62}+3075 q^{61}+4281 q^{60}+1713 q^{59}-2051 q^{58}-5863 q^{57}-5626 q^{56}-3482 q^{55}+2486 q^{54}+9325 q^{53}+9897 q^{52}+4979 q^{51}-5026 q^{50}-12051 q^{49}-15616 q^{48}-7985 q^{47}+7805 q^{46}+19382 q^{45}+21416 q^{44}+8559 q^{43}-9501 q^{42}-28770 q^{41}-29573 q^{40}-9214 q^{39}+18063 q^{38}+38427 q^{37}+34429 q^{36}+10439 q^{35}-29717 q^{34}-51274 q^{33}-39049 q^{32}-1253 q^{31}+42472 q^{30}+59898 q^{29}+42619 q^{28}-13042 q^{27}-59892 q^{26}-67753 q^{25}-31400 q^{24}+30032 q^{23}+72651 q^{22}+72550 q^{21}+12770 q^{20}-53480 q^{19}-84155 q^{18}-58447 q^{17}+9989 q^{16}+71898 q^{15}+90602 q^{14}+35273 q^{13}-40401 q^{12}-88276 q^{11}-74856 q^{10}-7328 q^9+64968 q^8+97593 q^7+49272 q^6-28571 q^5-86374 q^4-82476 q^3-18968 q^2+57604 q+99005+57604 q^{-1} -18968 q^{-2} -82476 q^{-3} -86374 q^{-4} -28571 q^{-5} +49272 q^{-6} +97593 q^{-7} +64968 q^{-8} -7328 q^{-9} -74856 q^{-10} -88276 q^{-11} -40401 q^{-12} +35273 q^{-13} +90602 q^{-14} +71898 q^{-15} +9989 q^{-16} -58447 q^{-17} -84155 q^{-18} -53480 q^{-19} +12770 q^{-20} +72550 q^{-21} +72651 q^{-22} +30032 q^{-23} -31400 q^{-24} -67753 q^{-25} -59892 q^{-26} -13042 q^{-27} +42619 q^{-28} +59898 q^{-29} +42472 q^{-30} -1253 q^{-31} -39049 q^{-32} -51274 q^{-33} -29717 q^{-34} +10439 q^{-35} +34429 q^{-36} +38427 q^{-37} +18063 q^{-38} -9214 q^{-39} -29573 q^{-40} -28770 q^{-41} -9501 q^{-42} +8559 q^{-43} +21416 q^{-44} +19382 q^{-45} +7805 q^{-46} -7985 q^{-47} -15616 q^{-48} -12051 q^{-49} -5026 q^{-50} +4979 q^{-51} +9897 q^{-52} +9325 q^{-53} +2486 q^{-54} -3482 q^{-55} -5626 q^{-56} -5863 q^{-57} -2051 q^{-58} +1713 q^{-59} +4281 q^{-60} +3075 q^{-61} +1092 q^{-62} -558 q^{-63} -2377 q^{-64} -2037 q^{-65} -858 q^{-66} +792 q^{-67} +1015 q^{-68} +970 q^{-69} +671 q^{-70} -338 q^{-71} -662 q^{-72} -602 q^{-73} -53 q^{-74} +32 q^{-75} +228 q^{-76} +381 q^{-77} +64 q^{-78} -88 q^{-79} -167 q^{-80} -26 q^{-81} -74 q^{-82} -13 q^{-83} +112 q^{-84} +35 q^{-85} -34 q^{-87} +15 q^{-88} -25 q^{-89} -24 q^{-90} +28 q^{-91} +7 q^{-92} +2 q^{-93} -11 q^{-94} +9 q^{-95} -2 q^{-96} -10 q^{-97} +7 q^{-98} + q^{-99} + q^{-100} -3 q^{-101} + q^{-102} + q^{-103} -2 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+2 q^{139}-q^{138}-q^{137}+3 q^{136}-q^{135}-q^{134}-3 q^{133}-2 q^{132}+12 q^{131}-3 q^{130}-8 q^{129}+7 q^{128}-3 q^{127}-q^{126}-12 q^{125}-10 q^{124}+45 q^{123}+11 q^{122}-21 q^{121}-q^{120}-27 q^{119}-6 q^{118}-43 q^{117}-39 q^{116}+124 q^{115}+102 q^{114}+33 q^{113}+4 q^{112}-129 q^{111}-116 q^{110}-214 q^{109}-212 q^{108}+219 q^{107}+398 q^{106}+465 q^{105}+379 q^{104}-129 q^{103}-434 q^{102}-963 q^{101}-1195 q^{100}-334 q^{99}+576 q^{98}+1633 q^{97}+2262 q^{96}+1491 q^{95}+275 q^{94}-1996 q^{93}-4083 q^{92}-3891 q^{91}-2340 q^{90}+1273 q^{89}+5489 q^{88}+7372 q^{87}+6927 q^{86}+2127 q^{85}-5346 q^{84}-10976 q^{83}-13790 q^{82}-9783 q^{81}+675 q^{80}+12280 q^{79}+22019 q^{78}+22128 q^{77}+10764 q^{76}-7003 q^{75}-27320 q^{74}-37935 q^{73}-31183 q^{72}-8944 q^{71}+24729 q^{70}+52041 q^{69}+58145 q^{68}+38820 q^{67}-6602 q^{66}-56918 q^{65}-87316 q^{64}-81709 q^{63}-30662 q^{62}+43870 q^{61}+108006 q^{60}+131582 q^{59}+88820 q^{58}-5449 q^{57}-110563 q^{56}-178746 q^{55}-161426 q^{54}-59774 q^{53}+85085 q^{52}+209955 q^{51}+238590 q^{50}+148394 q^{49}-28036 q^{48}-215295 q^{47}-307035 q^{46}-249368 q^{45}-57689 q^{44}+188369 q^{43}+354197 q^{42}+349946 q^{41}+163581 q^{40}-130500 q^{39}-373356 q^{38}-436960 q^{37}-275780 q^{36}+48810 q^{35}+362085 q^{34}+501111 q^{33}+382490 q^{32}+45578 q^{31}-326281 q^{30}-538813 q^{29}-472292 q^{28}-140463 q^{27}+273206 q^{26}+551729 q^{25}+540897 q^{24}+226027 q^{23}-214004 q^{22}-545455 q^{21}-586355 q^{20}-296298 q^{19}+155968 q^{18}+527435 q^{17}+613307 q^{16}+349033 q^{15}-106339 q^{14}-504324 q^{13}-625272 q^{12}-386210 q^{11}+65682 q^{10}+481641 q^9+629916 q^8+411290 q^7-35563 q^6-461732 q^5-629573 q^4-429427 q^3+10614 q^2+445007 q+630069+445007 q^{-1} +10614 q^{-2} -429427 q^{-3} -629573 q^{-4} -461732 q^{-5} -35563 q^{-6} +411290 q^{-7} +629916 q^{-8} +481641 q^{-9} +65682 q^{-10} -386210 q^{-11} -625272 q^{-12} -504324 q^{-13} -106339 q^{-14} +349033 q^{-15} +613307 q^{-16} +527435 q^{-17} +155968 q^{-18} -296298 q^{-19} -586355 q^{-20} -545455 q^{-21} -214004 q^{-22} +226027 q^{-23} +540897 q^{-24} +551729 q^{-25} +273206 q^{-26} -140463 q^{-27} -472292 q^{-28} -538813 q^{-29} -326281 q^{-30} +45578 q^{-31} +382490 q^{-32} +501111 q^{-33} +362085 q^{-34} +48810 q^{-35} -275780 q^{-36} -436960 q^{-37} -373356 q^{-38} -130500 q^{-39} +163581 q^{-40} +349946 q^{-41} +354197 q^{-42} +188369 q^{-43} -57689 q^{-44} -249368 q^{-45} -307035 q^{-46} -215295 q^{-47} -28036 q^{-48} +148394 q^{-49} +238590 q^{-50} +209955 q^{-51} +85085 q^{-52} -59774 q^{-53} -161426 q^{-54} -178746 q^{-55} -110563 q^{-56} -5449 q^{-57} +88820 q^{-58} +131582 q^{-59} +108006 q^{-60} +43870 q^{-61} -30662 q^{-62} -81709 q^{-63} -87316 q^{-64} -56918 q^{-65} -6602 q^{-66} +38820 q^{-67} +58145 q^{-68} +52041 q^{-69} +24729 q^{-70} -8944 q^{-71} -31183 q^{-72} -37935 q^{-73} -27320 q^{-74} -7003 q^{-75} +10764 q^{-76} +22128 q^{-77} +22019 q^{-78} +12280 q^{-79} +675 q^{-80} -9783 q^{-81} -13790 q^{-82} -10976 q^{-83} -5346 q^{-84} +2127 q^{-85} +6927 q^{-86} +7372 q^{-87} +5489 q^{-88} +1273 q^{-89} -2340 q^{-90} -3891 q^{-91} -4083 q^{-92} -1996 q^{-93} +275 q^{-94} +1491 q^{-95} +2262 q^{-96} +1633 q^{-97} +576 q^{-98} -334 q^{-99} -1195 q^{-100} -963 q^{-101} -434 q^{-102} -129 q^{-103} +379 q^{-104} +465 q^{-105} +398 q^{-106} +219 q^{-107} -212 q^{-108} -214 q^{-109} -116 q^{-110} -129 q^{-111} +4 q^{-112} +33 q^{-113} +102 q^{-114} +124 q^{-115} -39 q^{-116} -43 q^{-117} -6 q^{-118} -27 q^{-119} - q^{-120} -21 q^{-121} +11 q^{-122} +45 q^{-123} -10 q^{-124} -12 q^{-125} - q^{-126} -3 q^{-127} +7 q^{-128} -8 q^{-129} -3 q^{-130} +12 q^{-131} -2 q^{-132} -3 q^{-133} - q^{-134} - q^{-135} +3 q^{-136} - q^{-137} - q^{-138} +2 q^{-139} - q^{-140} </math>}}
coloured_jones_4 = <math>q^{50}-2 q^{49}+q^{48}+q^{47}-3 q^{46}+5 q^{45}-7 q^{44}+5 q^{43}+6 q^{42}-16 q^{41}+11 q^{40}-18 q^{39}+23 q^{38}+33 q^{37}-47 q^{36}-5 q^{35}-70 q^{34}+66 q^{33}+141 q^{32}-41 q^{31}-50 q^{30}-274 q^{29}+32 q^{28}+353 q^{27}+159 q^{26}+37 q^{25}-655 q^{24}-296 q^{23}+451 q^{22}+578 q^{21}+521 q^{20}-952 q^{19}-932 q^{18}+150 q^{17}+937 q^{16}+1362 q^{15}-873 q^{14}-1548 q^{13}-507 q^{12}+973 q^{11}+2200 q^{10}-474 q^9-1867 q^8-1182 q^7+733 q^6+2731 q^5-11 q^4-1872 q^3-1645 q^2+386 q+2903+386 q^{-1} -1645 q^{-2} -1872 q^{-3} -11 q^{-4} +2731 q^{-5} +733 q^{-6} -1182 q^{-7} -1867 q^{-8} -474 q^{-9} +2200 q^{-10} +973 q^{-11} -507 q^{-12} -1548 q^{-13} -873 q^{-14} +1362 q^{-15} +937 q^{-16} +150 q^{-17} -932 q^{-18} -952 q^{-19} +521 q^{-20} +578 q^{-21} +451 q^{-22} -296 q^{-23} -655 q^{-24} +37 q^{-25} +159 q^{-26} +353 q^{-27} +32 q^{-28} -274 q^{-29} -50 q^{-30} -41 q^{-31} +141 q^{-32} +66 q^{-33} -70 q^{-34} -5 q^{-35} -47 q^{-36} +33 q^{-37} +23 q^{-38} -18 q^{-39} +11 q^{-40} -16 q^{-41} +6 q^{-42} +5 q^{-43} -7 q^{-44} +5 q^{-45} -3 q^{-46} + q^{-47} + q^{-48} -2 q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>-q^{75}+2 q^{74}-q^{73}-q^{72}+3 q^{71}-q^{70}-5 q^{69}+5 q^{68}-4 q^{66}+10 q^{65}+3 q^{64}-19 q^{63}-2 q^{62}-q^{61}+36 q^{59}+33 q^{58}-30 q^{57}-58 q^{56}-65 q^{55}-26 q^{54}+115 q^{53}+184 q^{52}+82 q^{51}-116 q^{50}-321 q^{49}-320 q^{48}+55 q^{47}+496 q^{46}+623 q^{45}+264 q^{44}-531 q^{43}-1137 q^{42}-802 q^{41}+331 q^{40}+1510 q^{39}+1710 q^{38}+371 q^{37}-1752 q^{36}-2759 q^{35}-1527 q^{34}+1389 q^{33}+3772 q^{32}+3240 q^{31}-423 q^{30}-4456 q^{29}-5166 q^{28}-1245 q^{27}+4500 q^{26}+7083 q^{25}+3498 q^{24}-3903 q^{23}-8681 q^{22}-5933 q^{21}+2616 q^{20}+9688 q^{19}+8440 q^{18}-956 q^{17}-10187 q^{16}-10475 q^{15}-962 q^{14}+10093 q^{13}+12223 q^{12}+2709 q^{11}-9719 q^{10}-13272 q^9-4355 q^8+9034 q^7+14136 q^6+5574 q^5-8372 q^4-14366 q^3-6711 q^2+7511 q+14645+7511 q^{-1} -6711 q^{-2} -14366 q^{-3} -8372 q^{-4} +5574 q^{-5} +14136 q^{-6} +9034 q^{-7} -4355 q^{-8} -13272 q^{-9} -9719 q^{-10} +2709 q^{-11} +12223 q^{-12} +10093 q^{-13} -962 q^{-14} -10475 q^{-15} -10187 q^{-16} -956 q^{-17} +8440 q^{-18} +9688 q^{-19} +2616 q^{-20} -5933 q^{-21} -8681 q^{-22} -3903 q^{-23} +3498 q^{-24} +7083 q^{-25} +4500 q^{-26} -1245 q^{-27} -5166 q^{-28} -4456 q^{-29} -423 q^{-30} +3240 q^{-31} +3772 q^{-32} +1389 q^{-33} -1527 q^{-34} -2759 q^{-35} -1752 q^{-36} +371 q^{-37} +1710 q^{-38} +1510 q^{-39} +331 q^{-40} -802 q^{-41} -1137 q^{-42} -531 q^{-43} +264 q^{-44} +623 q^{-45} +496 q^{-46} +55 q^{-47} -320 q^{-48} -321 q^{-49} -116 q^{-50} +82 q^{-51} +184 q^{-52} +115 q^{-53} -26 q^{-54} -65 q^{-55} -58 q^{-56} -30 q^{-57} +33 q^{-58} +36 q^{-59} - q^{-61} -2 q^{-62} -19 q^{-63} +3 q^{-64} +10 q^{-65} -4 q^{-66} +5 q^{-68} -5 q^{-69} - q^{-70} +3 q^{-71} - q^{-72} - q^{-73} +2 q^{-74} - q^{-75} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{105}-2 q^{104}+q^{103}+q^{102}-3 q^{101}+q^{100}+q^{99}+7 q^{98}-10 q^{97}-2 q^{96}+9 q^{95}-11 q^{94}+2 q^{93}+7 q^{92}+28 q^{91}-24 q^{90}-25 q^{89}+15 q^{88}-34 q^{87}+35 q^{85}+112 q^{84}-13 q^{83}-74 q^{82}-26 q^{81}-167 q^{80}-88 q^{79}+64 q^{78}+381 q^{77}+228 q^{76}+32 q^{75}-53 q^{74}-602 q^{73}-662 q^{72}-338 q^{71}+671 q^{70}+970 q^{69}+1015 q^{68}+792 q^{67}-858 q^{66}-2037 q^{65}-2377 q^{64}-558 q^{63}+1092 q^{62}+3075 q^{61}+4281 q^{60}+1713 q^{59}-2051 q^{58}-5863 q^{57}-5626 q^{56}-3482 q^{55}+2486 q^{54}+9325 q^{53}+9897 q^{52}+4979 q^{51}-5026 q^{50}-12051 q^{49}-15616 q^{48}-7985 q^{47}+7805 q^{46}+19382 q^{45}+21416 q^{44}+8559 q^{43}-9501 q^{42}-28770 q^{41}-29573 q^{40}-9214 q^{39}+18063 q^{38}+38427 q^{37}+34429 q^{36}+10439 q^{35}-29717 q^{34}-51274 q^{33}-39049 q^{32}-1253 q^{31}+42472 q^{30}+59898 q^{29}+42619 q^{28}-13042 q^{27}-59892 q^{26}-67753 q^{25}-31400 q^{24}+30032 q^{23}+72651 q^{22}+72550 q^{21}+12770 q^{20}-53480 q^{19}-84155 q^{18}-58447 q^{17}+9989 q^{16}+71898 q^{15}+90602 q^{14}+35273 q^{13}-40401 q^{12}-88276 q^{11}-74856 q^{10}-7328 q^9+64968 q^8+97593 q^7+49272 q^6-28571 q^5-86374 q^4-82476 q^3-18968 q^2+57604 q+99005+57604 q^{-1} -18968 q^{-2} -82476 q^{-3} -86374 q^{-4} -28571 q^{-5} +49272 q^{-6} +97593 q^{-7} +64968 q^{-8} -7328 q^{-9} -74856 q^{-10} -88276 q^{-11} -40401 q^{-12} +35273 q^{-13} +90602 q^{-14} +71898 q^{-15} +9989 q^{-16} -58447 q^{-17} -84155 q^{-18} -53480 q^{-19} +12770 q^{-20} +72550 q^{-21} +72651 q^{-22} +30032 q^{-23} -31400 q^{-24} -67753 q^{-25} -59892 q^{-26} -13042 q^{-27} +42619 q^{-28} +59898 q^{-29} +42472 q^{-30} -1253 q^{-31} -39049 q^{-32} -51274 q^{-33} -29717 q^{-34} +10439 q^{-35} +34429 q^{-36} +38427 q^{-37} +18063 q^{-38} -9214 q^{-39} -29573 q^{-40} -28770 q^{-41} -9501 q^{-42} +8559 q^{-43} +21416 q^{-44} +19382 q^{-45} +7805 q^{-46} -7985 q^{-47} -15616 q^{-48} -12051 q^{-49} -5026 q^{-50} +4979 q^{-51} +9897 q^{-52} +9325 q^{-53} +2486 q^{-54} -3482 q^{-55} -5626 q^{-56} -5863 q^{-57} -2051 q^{-58} +1713 q^{-59} +4281 q^{-60} +3075 q^{-61} +1092 q^{-62} -558 q^{-63} -2377 q^{-64} -2037 q^{-65} -858 q^{-66} +792 q^{-67} +1015 q^{-68} +970 q^{-69} +671 q^{-70} -338 q^{-71} -662 q^{-72} -602 q^{-73} -53 q^{-74} +32 q^{-75} +228 q^{-76} +381 q^{-77} +64 q^{-78} -88 q^{-79} -167 q^{-80} -26 q^{-81} -74 q^{-82} -13 q^{-83} +112 q^{-84} +35 q^{-85} -34 q^{-87} +15 q^{-88} -25 q^{-89} -24 q^{-90} +28 q^{-91} +7 q^{-92} +2 q^{-93} -11 q^{-94} +9 q^{-95} -2 q^{-96} -10 q^{-97} +7 q^{-98} + q^{-99} + q^{-100} -3 q^{-101} + q^{-102} + q^{-103} -2 q^{-104} + q^{-105} </math> |

coloured_jones_7 = <math>-q^{140}+2 q^{139}-q^{138}-q^{137}+3 q^{136}-q^{135}-q^{134}-3 q^{133}-2 q^{132}+12 q^{131}-3 q^{130}-8 q^{129}+7 q^{128}-3 q^{127}-q^{126}-12 q^{125}-10 q^{124}+45 q^{123}+11 q^{122}-21 q^{121}-q^{120}-27 q^{119}-6 q^{118}-43 q^{117}-39 q^{116}+124 q^{115}+102 q^{114}+33 q^{113}+4 q^{112}-129 q^{111}-116 q^{110}-214 q^{109}-212 q^{108}+219 q^{107}+398 q^{106}+465 q^{105}+379 q^{104}-129 q^{103}-434 q^{102}-963 q^{101}-1195 q^{100}-334 q^{99}+576 q^{98}+1633 q^{97}+2262 q^{96}+1491 q^{95}+275 q^{94}-1996 q^{93}-4083 q^{92}-3891 q^{91}-2340 q^{90}+1273 q^{89}+5489 q^{88}+7372 q^{87}+6927 q^{86}+2127 q^{85}-5346 q^{84}-10976 q^{83}-13790 q^{82}-9783 q^{81}+675 q^{80}+12280 q^{79}+22019 q^{78}+22128 q^{77}+10764 q^{76}-7003 q^{75}-27320 q^{74}-37935 q^{73}-31183 q^{72}-8944 q^{71}+24729 q^{70}+52041 q^{69}+58145 q^{68}+38820 q^{67}-6602 q^{66}-56918 q^{65}-87316 q^{64}-81709 q^{63}-30662 q^{62}+43870 q^{61}+108006 q^{60}+131582 q^{59}+88820 q^{58}-5449 q^{57}-110563 q^{56}-178746 q^{55}-161426 q^{54}-59774 q^{53}+85085 q^{52}+209955 q^{51}+238590 q^{50}+148394 q^{49}-28036 q^{48}-215295 q^{47}-307035 q^{46}-249368 q^{45}-57689 q^{44}+188369 q^{43}+354197 q^{42}+349946 q^{41}+163581 q^{40}-130500 q^{39}-373356 q^{38}-436960 q^{37}-275780 q^{36}+48810 q^{35}+362085 q^{34}+501111 q^{33}+382490 q^{32}+45578 q^{31}-326281 q^{30}-538813 q^{29}-472292 q^{28}-140463 q^{27}+273206 q^{26}+551729 q^{25}+540897 q^{24}+226027 q^{23}-214004 q^{22}-545455 q^{21}-586355 q^{20}-296298 q^{19}+155968 q^{18}+527435 q^{17}+613307 q^{16}+349033 q^{15}-106339 q^{14}-504324 q^{13}-625272 q^{12}-386210 q^{11}+65682 q^{10}+481641 q^9+629916 q^8+411290 q^7-35563 q^6-461732 q^5-629573 q^4-429427 q^3+10614 q^2+445007 q+630069+445007 q^{-1} +10614 q^{-2} -429427 q^{-3} -629573 q^{-4} -461732 q^{-5} -35563 q^{-6} +411290 q^{-7} +629916 q^{-8} +481641 q^{-9} +65682 q^{-10} -386210 q^{-11} -625272 q^{-12} -504324 q^{-13} -106339 q^{-14} +349033 q^{-15} +613307 q^{-16} +527435 q^{-17} +155968 q^{-18} -296298 q^{-19} -586355 q^{-20} -545455 q^{-21} -214004 q^{-22} +226027 q^{-23} +540897 q^{-24} +551729 q^{-25} +273206 q^{-26} -140463 q^{-27} -472292 q^{-28} -538813 q^{-29} -326281 q^{-30} +45578 q^{-31} +382490 q^{-32} +501111 q^{-33} +362085 q^{-34} +48810 q^{-35} -275780 q^{-36} -436960 q^{-37} -373356 q^{-38} -130500 q^{-39} +163581 q^{-40} +349946 q^{-41} +354197 q^{-42} +188369 q^{-43} -57689 q^{-44} -249368 q^{-45} -307035 q^{-46} -215295 q^{-47} -28036 q^{-48} +148394 q^{-49} +238590 q^{-50} +209955 q^{-51} +85085 q^{-52} -59774 q^{-53} -161426 q^{-54} -178746 q^{-55} -110563 q^{-56} -5449 q^{-57} +88820 q^{-58} +131582 q^{-59} +108006 q^{-60} +43870 q^{-61} -30662 q^{-62} -81709 q^{-63} -87316 q^{-64} -56918 q^{-65} -6602 q^{-66} +38820 q^{-67} +58145 q^{-68} +52041 q^{-69} +24729 q^{-70} -8944 q^{-71} -31183 q^{-72} -37935 q^{-73} -27320 q^{-74} -7003 q^{-75} +10764 q^{-76} +22128 q^{-77} +22019 q^{-78} +12280 q^{-79} +675 q^{-80} -9783 q^{-81} -13790 q^{-82} -10976 q^{-83} -5346 q^{-84} +2127 q^{-85} +6927 q^{-86} +7372 q^{-87} +5489 q^{-88} +1273 q^{-89} -2340 q^{-90} -3891 q^{-91} -4083 q^{-92} -1996 q^{-93} +275 q^{-94} +1491 q^{-95} +2262 q^{-96} +1633 q^{-97} +576 q^{-98} -334 q^{-99} -1195 q^{-100} -963 q^{-101} -434 q^{-102} -129 q^{-103} +379 q^{-104} +465 q^{-105} +398 q^{-106} +219 q^{-107} -212 q^{-108} -214 q^{-109} -116 q^{-110} -129 q^{-111} +4 q^{-112} +33 q^{-113} +102 q^{-114} +124 q^{-115} -39 q^{-116} -43 q^{-117} -6 q^{-118} -27 q^{-119} - q^{-120} -21 q^{-121} +11 q^{-122} +45 q^{-123} -10 q^{-124} -12 q^{-125} - q^{-126} -3 q^{-127} +7 q^{-128} -8 q^{-129} -3 q^{-130} +12 q^{-131} -2 q^{-132} -3 q^{-133} - q^{-134} - q^{-135} +3 q^{-136} - q^{-137} - q^{-138} +2 q^{-139} - q^{-140} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 79]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[18, 13, 19, 14],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 79]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[18, 13, 19, 14],
X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16],
X[16, 9, 17, 10], X[10, 17, 11, 18], X[20, 15, 1, 16],
X[14, 19, 15, 20], X[2, 8, 3, 7], X[4, 12, 5, 11]]</nowiki></pre></td></tr>
X[14, 19, 15, 20], X[2, 8, 3, 7], X[4, 12, 5, 11]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 79]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 10, -3, 4, -8, 7, -5, 6,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 79]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 10, -3, 4, -8, 7, -5, 6,
-4, 8, -7]</nowiki></pre></td></tr>
-4, 8, -7]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 79]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 12, 2, 16, 4, 18, 20, 10, 14]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 79]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 79]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, 2, 2, -1, -1, 2, 2, 2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 12, 2, 16, 4, 18, 20, 10, 14]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 79]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 79]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, 2, 2, -1, -1, 2, 2, 2}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 79]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_79_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 79]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{NegativeAmphicheiral, {2, 3}, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 79]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 7 12 2 3 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 79]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 79]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_79_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 79]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{NegativeAmphicheiral, {2, 3}, 4, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 79]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 7 12 2 3 4
15 + t - -- + -- - -- - 12 t + 7 t - 3 t + t
15 + t - -- + -- - -- - 12 t + 7 t - 3 t + t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 79]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 5 z + 9 z + 5 z + z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 79]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 79]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8
1 + 5 z + 9 z + 5 z + z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 79]], KnotSignature[Knot[10, 79]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{61, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 79]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 5 8 9 2 3 4 5
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 79]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 79]], KnotSignature[Knot[10, 79]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{61, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 79]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 5 8 9 2 3 4 5
11 - q + -- - -- + -- - - - 9 q + 8 q - 5 q + 2 q - q
11 - q + -- - -- + -- - - - 9 q + 8 q - 5 q + 2 q - q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 79]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 79]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 3 5 2 10 14
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 79]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 79]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 3 5 2 10 14
1 - q - --- + -- + 5 q - 3 q - q
1 - q - --- + -- + 5 q - 3 q - q
10 2
10 2
q q</nowiki></pre></td></tr>
q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 79]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 79]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
5 2 2 9 z 2 2 4 5 z 2 4
5 2 2 9 z 2 2 4 5 z 2 4
11 - -- - 5 a + 23 z - ---- - 9 a z + 19 z - ---- - 5 a z +
11 - -- - 5 a + 23 z - ---- - 9 a z + 19 z - ---- - 5 a z +
Line 155: Line 193:
7 z - -- - a z + z
7 z - -- - a z + z
2
2
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 79]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 5 2 2 z 2 z 11 z 3 5 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 79]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 5 2 2 z 2 z 11 z 3 5 2
11 + -- + 5 a + --- - --- - ---- - 11 a z - 2 a z + 2 a z - 28 z +
11 + -- + 5 a + --- - --- - ---- - 11 a z - 2 a z + 2 a z - 28 z +
2 5 3 a
2 5 3 a
Line 190: Line 232:
2 8 z 9
2 8 z 9
3 a z + -- + a z
3 a z + -- + a z
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 79]], Vassiliev[3][Knot[10, 79]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 79]], Vassiliev[3][Knot[10, 79]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 79]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6 1 1 1 4 1 4 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 79]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>6 1 1 1 4 1 4 4
- + 6 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 6 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 207: Line 257:
7 4 9 4 11 5
7 4 9 4 11 5
q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 79], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 2 -13 5 11 2 21 30 5 53 48
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 79], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 2 -13 5 11 2 21 30 5 53 48
99 + q - --- + q + --- - --- + --- + -- - -- - -- + -- - -- -
99 + q - --- + q + --- - --- + --- + -- - -- - -- + -- - -- -
14 12 11 10 9 8 7 6 5
14 12 11 10 9 8 7 6 5
Line 221: Line 275:
7 8 9 10 11 12 13 14 15
7 8 9 10 11 12 13 14 15
5 q - 30 q + 21 q + 2 q - 11 q + 5 q + q - 2 q + q</nowiki></pre></td></tr>
5 q - 30 q + 21 q + 2 q - 11 q + 5 q + q - 2 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 16:57, 1 September 2005

10 78.gif

10_78

10 80.gif

10_80

10 79.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 79's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 79 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X8493 X12,6,13,5 X18,13,19,14 X16,9,17,10 X10,17,11,18 X20,15,1,16 X14,19,15,20 X2837 X4,12,5,11
Gauss code 1, -9, 2, -10, 3, -1, 9, -2, 5, -6, 10, -3, 4, -8, 7, -5, 6, -4, 8, -7
Dowker-Thistlethwaite code 6 8 12 2 16 4 18 20 10 14
Conway Notation [(3,2)(3,2)]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 79 ML.gif 10 79 AP.gif
[{9, 12}, {3, 11}, {12, 10}, {2, 6}, {1, 3}, {4, 7}, {5, 2}, {6, 8}, {7, 9}, {8, 4}, {11, 5}, {10, 1}]

[edit Notes on presentations of 10 79]


Three dimensional invariants

Symmetry type Negative amphicheiral
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 12.5403
A-Polynomial See Data:10 79/A-polynomial

[edit Notes for 10 79's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 79's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 61, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (5, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 79. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         1 1
7        41 -3
5       41  3
3      54   -1
1     64    2
-1    46     2
-3   45      -1
-5  14       3
-7 14        -3
-9 1         1
-111          -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials