10 17: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 17 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-1,4,-6,5,-7,9,-2,10,-8,3,-4,6,-5,7,-3/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=17|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,8,-1,4,-6,5,-7,9,-2,10,-8,3,-4,6,-5,7,-3/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>11</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
<tr align=center><td>9</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>1</td></tr>
Line 71: Line 39:
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{15}-2 q^{14}+4 q^{12}-6 q^{11}+10 q^9-11 q^8-3 q^7+20 q^6-16 q^5-10 q^4+30 q^3-18 q^2-16 q+35-16 q^{-1} -18 q^{-2} +30 q^{-3} -10 q^{-4} -16 q^{-5} +20 q^{-6} -3 q^{-7} -11 q^{-8} +10 q^{-9} -6 q^{-11} +4 q^{-12} -2 q^{-14} + q^{-15} </math> |

coloured_jones_3 = <math>-q^{30}+2 q^{29}-q^{27}-2 q^{26}+3 q^{25}+q^{24}-3 q^{23}-2 q^{22}+6 q^{21}-8 q^{19}-q^{18}+12 q^{17}+4 q^{16}-18 q^{15}-7 q^{14}+19 q^{13}+19 q^{12}-24 q^{11}-25 q^{10}+18 q^9+40 q^8-18 q^7-46 q^6+10 q^5+56 q^4-8 q^3-57 q^2+63-57 q^{-2} -8 q^{-3} +56 q^{-4} +10 q^{-5} -46 q^{-6} -18 q^{-7} +40 q^{-8} +18 q^{-9} -25 q^{-10} -24 q^{-11} +19 q^{-12} +19 q^{-13} -7 q^{-14} -18 q^{-15} +4 q^{-16} +12 q^{-17} - q^{-18} -8 q^{-19} +6 q^{-21} -2 q^{-22} -3 q^{-23} + q^{-24} +3 q^{-25} -2 q^{-26} - q^{-27} +2 q^{-29} - q^{-30} </math> |
{{Display Coloured Jones|J2=<math>q^{15}-2 q^{14}+4 q^{12}-6 q^{11}+10 q^9-11 q^8-3 q^7+20 q^6-16 q^5-10 q^4+30 q^3-18 q^2-16 q+35-16 q^{-1} -18 q^{-2} +30 q^{-3} -10 q^{-4} -16 q^{-5} +20 q^{-6} -3 q^{-7} -11 q^{-8} +10 q^{-9} -6 q^{-11} +4 q^{-12} -2 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+2 q^{29}-q^{27}-2 q^{26}+3 q^{25}+q^{24}-3 q^{23}-2 q^{22}+6 q^{21}-8 q^{19}-q^{18}+12 q^{17}+4 q^{16}-18 q^{15}-7 q^{14}+19 q^{13}+19 q^{12}-24 q^{11}-25 q^{10}+18 q^9+40 q^8-18 q^7-46 q^6+10 q^5+56 q^4-8 q^3-57 q^2+63-57 q^{-2} -8 q^{-3} +56 q^{-4} +10 q^{-5} -46 q^{-6} -18 q^{-7} +40 q^{-8} +18 q^{-9} -25 q^{-10} -24 q^{-11} +19 q^{-12} +19 q^{-13} -7 q^{-14} -18 q^{-15} +4 q^{-16} +12 q^{-17} - q^{-18} -8 q^{-19} +6 q^{-21} -2 q^{-22} -3 q^{-23} + q^{-24} +3 q^{-25} -2 q^{-26} - q^{-27} +2 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-2 q^{49}+q^{47}-q^{46}+5 q^{45}-5 q^{44}+q^{43}-7 q^{41}+13 q^{40}-7 q^{39}+6 q^{38}+2 q^{37}-22 q^{36}+16 q^{35}-11 q^{34}+21 q^{33}+15 q^{32}-40 q^{31}+10 q^{30}-31 q^{29}+36 q^{28}+44 q^{27}-40 q^{26}+10 q^{25}-72 q^{24}+26 q^{23}+66 q^{22}-17 q^{21}+47 q^{20}-110 q^{19}-15 q^{18}+52 q^{17}+2 q^{16}+120 q^{15}-113 q^{14}-57 q^{13}+4 q^{12}-6 q^{11}+194 q^{10}-90 q^9-77 q^8-42 q^7-30 q^6+237 q^5-66 q^4-76 q^3-67 q^2-50 q+251-50 q^{-1} -67 q^{-2} -76 q^{-3} -66 q^{-4} +237 q^{-5} -30 q^{-6} -42 q^{-7} -77 q^{-8} -90 q^{-9} +194 q^{-10} -6 q^{-11} +4 q^{-12} -57 q^{-13} -113 q^{-14} +120 q^{-15} +2 q^{-16} +52 q^{-17} -15 q^{-18} -110 q^{-19} +47 q^{-20} -17 q^{-21} +66 q^{-22} +26 q^{-23} -72 q^{-24} +10 q^{-25} -40 q^{-26} +44 q^{-27} +36 q^{-28} -31 q^{-29} +10 q^{-30} -40 q^{-31} +15 q^{-32} +21 q^{-33} -11 q^{-34} +16 q^{-35} -22 q^{-36} +2 q^{-37} +6 q^{-38} -7 q^{-39} +13 q^{-40} -7 q^{-41} + q^{-43} -5 q^{-44} +5 q^{-45} - q^{-46} + q^{-47} -2 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+2 q^{74}-q^{72}+q^{71}-2 q^{70}-3 q^{69}+3 q^{68}+3 q^{67}+4 q^{65}-3 q^{64}-11 q^{63}-2 q^{62}+6 q^{61}+7 q^{60}+12 q^{59}+2 q^{58}-19 q^{57}-20 q^{56}-q^{55}+13 q^{54}+31 q^{53}+21 q^{52}-16 q^{51}-44 q^{50}-34 q^{49}+2 q^{48}+50 q^{47}+60 q^{46}+16 q^{45}-47 q^{44}-78 q^{43}-48 q^{42}+28 q^{41}+86 q^{40}+81 q^{39}+8 q^{38}-73 q^{37}-99 q^{36}-63 q^{35}+30 q^{34}+108 q^{33}+106 q^{32}+34 q^{31}-61 q^{30}-151 q^{29}-125 q^{28}+13 q^{27}+148 q^{26}+196 q^{25}+104 q^{24}-130 q^{23}-279 q^{22}-189 q^{21}+66 q^{20}+309 q^{19}+315 q^{18}+q^{17}-340 q^{16}-387 q^{15}-85 q^{14}+331 q^{13}+468 q^{12}+144 q^{11}-323 q^{10}-495 q^9-207 q^8+301 q^7+535 q^6+231 q^5-292 q^4-526 q^3-264 q^2+267 q+553+267 q^{-1} -264 q^{-2} -526 q^{-3} -292 q^{-4} +231 q^{-5} +535 q^{-6} +301 q^{-7} -207 q^{-8} -495 q^{-9} -323 q^{-10} +144 q^{-11} +468 q^{-12} +331 q^{-13} -85 q^{-14} -387 q^{-15} -340 q^{-16} + q^{-17} +315 q^{-18} +309 q^{-19} +66 q^{-20} -189 q^{-21} -279 q^{-22} -130 q^{-23} +104 q^{-24} +196 q^{-25} +148 q^{-26} +13 q^{-27} -125 q^{-28} -151 q^{-29} -61 q^{-30} +34 q^{-31} +106 q^{-32} +108 q^{-33} +30 q^{-34} -63 q^{-35} -99 q^{-36} -73 q^{-37} +8 q^{-38} +81 q^{-39} +86 q^{-40} +28 q^{-41} -48 q^{-42} -78 q^{-43} -47 q^{-44} +16 q^{-45} +60 q^{-46} +50 q^{-47} +2 q^{-48} -34 q^{-49} -44 q^{-50} -16 q^{-51} +21 q^{-52} +31 q^{-53} +13 q^{-54} - q^{-55} -20 q^{-56} -19 q^{-57} +2 q^{-58} +12 q^{-59} +7 q^{-60} +6 q^{-61} -2 q^{-62} -11 q^{-63} -3 q^{-64} +4 q^{-65} +3 q^{-67} +3 q^{-68} -3 q^{-69} -2 q^{-70} + q^{-71} - q^{-72} +2 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-2 q^{104}+q^{102}-q^{101}+2 q^{100}+5 q^{98}-7 q^{97}-3 q^{96}+2 q^{95}-5 q^{94}+5 q^{93}+4 q^{92}+17 q^{91}-14 q^{90}-9 q^{89}-16 q^{87}+6 q^{86}+10 q^{85}+41 q^{84}-17 q^{83}-17 q^{82}-4 q^{81}-36 q^{80}-q^{79}+16 q^{78}+80 q^{77}-10 q^{76}-23 q^{75}-13 q^{74}-71 q^{73}-26 q^{72}+14 q^{71}+139 q^{70}+24 q^{69}-9 q^{68}-14 q^{67}-124 q^{66}-91 q^{65}-30 q^{64}+186 q^{63}+75 q^{62}+53 q^{61}+52 q^{60}-132 q^{59}-165 q^{58}-143 q^{57}+138 q^{56}+37 q^{55}+95 q^{54}+195 q^{53}+11 q^{52}-92 q^{51}-200 q^{50}+16 q^{49}-207 q^{48}-82 q^{47}+223 q^{46}+231 q^{45}+230 q^{44}+36 q^{43}+81 q^{42}-516 q^{41}-549 q^{40}-122 q^{39}+215 q^{38}+591 q^{37}+584 q^{36}+575 q^{35}-538 q^{34}-1032 q^{33}-798 q^{32}-240 q^{31}+638 q^{30}+1130 q^{29}+1376 q^{28}-136 q^{27}-1204 q^{26}-1453 q^{25}-940 q^{24}+308 q^{23}+1382 q^{22}+2104 q^{21}+446 q^{20}-1054 q^{19}-1817 q^{18}-1520 q^{17}-138 q^{16}+1355 q^{15}+2521 q^{14}+887 q^{13}-815 q^{12}-1917 q^{11}-1810 q^{10}-445 q^9+1242 q^8+2670 q^7+1089 q^6-659 q^5-1912 q^4-1893 q^3-579 q^2+1163 q+2699+1163 q^{-1} -579 q^{-2} -1893 q^{-3} -1912 q^{-4} -659 q^{-5} +1089 q^{-6} +2670 q^{-7} +1242 q^{-8} -445 q^{-9} -1810 q^{-10} -1917 q^{-11} -815 q^{-12} +887 q^{-13} +2521 q^{-14} +1355 q^{-15} -138 q^{-16} -1520 q^{-17} -1817 q^{-18} -1054 q^{-19} +446 q^{-20} +2104 q^{-21} +1382 q^{-22} +308 q^{-23} -940 q^{-24} -1453 q^{-25} -1204 q^{-26} -136 q^{-27} +1376 q^{-28} +1130 q^{-29} +638 q^{-30} -240 q^{-31} -798 q^{-32} -1032 q^{-33} -538 q^{-34} +575 q^{-35} +584 q^{-36} +591 q^{-37} +215 q^{-38} -122 q^{-39} -549 q^{-40} -516 q^{-41} +81 q^{-42} +36 q^{-43} +230 q^{-44} +231 q^{-45} +223 q^{-46} -82 q^{-47} -207 q^{-48} +16 q^{-49} -200 q^{-50} -92 q^{-51} +11 q^{-52} +195 q^{-53} +95 q^{-54} +37 q^{-55} +138 q^{-56} -143 q^{-57} -165 q^{-58} -132 q^{-59} +52 q^{-60} +53 q^{-61} +75 q^{-62} +186 q^{-63} -30 q^{-64} -91 q^{-65} -124 q^{-66} -14 q^{-67} -9 q^{-68} +24 q^{-69} +139 q^{-70} +14 q^{-71} -26 q^{-72} -71 q^{-73} -13 q^{-74} -23 q^{-75} -10 q^{-76} +80 q^{-77} +16 q^{-78} - q^{-79} -36 q^{-80} -4 q^{-81} -17 q^{-82} -17 q^{-83} +41 q^{-84} +10 q^{-85} +6 q^{-86} -16 q^{-87} -9 q^{-89} -14 q^{-90} +17 q^{-91} +4 q^{-92} +5 q^{-93} -5 q^{-94} +2 q^{-95} -3 q^{-96} -7 q^{-97} +5 q^{-98} +2 q^{-100} - q^{-101} + q^{-102} -2 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+2 q^{139}-q^{137}+q^{136}-2 q^{135}-2 q^{133}-q^{132}+7 q^{131}+q^{130}-q^{129}+4 q^{128}-7 q^{127}-3 q^{126}-6 q^{125}-7 q^{124}+17 q^{123}+6 q^{122}+q^{121}+10 q^{120}-12 q^{119}-5 q^{118}-13 q^{117}-21 q^{116}+27 q^{115}+14 q^{114}+3 q^{113}+18 q^{112}-25 q^{111}-4 q^{110}-13 q^{109}-36 q^{108}+42 q^{107}+30 q^{106}+15 q^{105}+19 q^{104}-62 q^{103}-27 q^{102}-23 q^{101}-51 q^{100}+77 q^{99}+79 q^{98}+71 q^{97}+55 q^{96}-115 q^{95}-103 q^{94}-105 q^{93}-121 q^{92}+93 q^{91}+150 q^{90}+198 q^{89}+198 q^{88}-76 q^{87}-156 q^{86}-240 q^{85}-305 q^{84}-14 q^{83}+106 q^{82}+267 q^{81}+397 q^{80}+112 q^{79}-8 q^{78}-206 q^{77}-410 q^{76}-176 q^{75}-131 q^{74}+48 q^{73}+314 q^{72}+150 q^{71}+217 q^{70}+142 q^{69}-88 q^{68}+62 q^{67}-160 q^{66}-289 q^{65}-216 q^{64}-460 q^{63}-125 q^{62}+261 q^{61}+477 q^{60}+972 q^{59}+675 q^{58}+78 q^{57}-529 q^{56}-1512 q^{55}-1450 q^{54}-731 q^{53}+277 q^{52}+1846 q^{51}+2262 q^{50}+1710 q^{49}+431 q^{48}-1878 q^{47}-3034 q^{46}-2852 q^{45}-1435 q^{44}+1503 q^{43}+3470 q^{42}+3975 q^{41}+2772 q^{40}-718 q^{39}-3639 q^{38}-4963 q^{37}-4104 q^{36}-306 q^{35}+3382 q^{34}+5632 q^{33}+5408 q^{32}+1485 q^{31}-2907 q^{30}-6028 q^{29}-6446 q^{28}-2598 q^{27}+2259 q^{26}+6138 q^{25}+7228 q^{24}+3551 q^{23}-1610 q^{22}-6059 q^{21}-7728 q^{20}-4287 q^{19}+1035 q^{18}+5906 q^{17}+8021 q^{16}+4764 q^{15}-614 q^{14}-5710 q^{13}-8128 q^{12}-5079 q^{11}+298 q^{10}+5565 q^9+8205 q^8+5231 q^7-162 q^6-5447 q^5-8167 q^4-5321 q^3+13 q^2+5376 q+8221+5376 q^{-1} +13 q^{-2} -5321 q^{-3} -8167 q^{-4} -5447 q^{-5} -162 q^{-6} +5231 q^{-7} +8205 q^{-8} +5565 q^{-9} +298 q^{-10} -5079 q^{-11} -8128 q^{-12} -5710 q^{-13} -614 q^{-14} +4764 q^{-15} +8021 q^{-16} +5906 q^{-17} +1035 q^{-18} -4287 q^{-19} -7728 q^{-20} -6059 q^{-21} -1610 q^{-22} +3551 q^{-23} +7228 q^{-24} +6138 q^{-25} +2259 q^{-26} -2598 q^{-27} -6446 q^{-28} -6028 q^{-29} -2907 q^{-30} +1485 q^{-31} +5408 q^{-32} +5632 q^{-33} +3382 q^{-34} -306 q^{-35} -4104 q^{-36} -4963 q^{-37} -3639 q^{-38} -718 q^{-39} +2772 q^{-40} +3975 q^{-41} +3470 q^{-42} +1503 q^{-43} -1435 q^{-44} -2852 q^{-45} -3034 q^{-46} -1878 q^{-47} +431 q^{-48} +1710 q^{-49} +2262 q^{-50} +1846 q^{-51} +277 q^{-52} -731 q^{-53} -1450 q^{-54} -1512 q^{-55} -529 q^{-56} +78 q^{-57} +675 q^{-58} +972 q^{-59} +477 q^{-60} +261 q^{-61} -125 q^{-62} -460 q^{-63} -216 q^{-64} -289 q^{-65} -160 q^{-66} +62 q^{-67} -88 q^{-68} +142 q^{-69} +217 q^{-70} +150 q^{-71} +314 q^{-72} +48 q^{-73} -131 q^{-74} -176 q^{-75} -410 q^{-76} -206 q^{-77} -8 q^{-78} +112 q^{-79} +397 q^{-80} +267 q^{-81} +106 q^{-82} -14 q^{-83} -305 q^{-84} -240 q^{-85} -156 q^{-86} -76 q^{-87} +198 q^{-88} +198 q^{-89} +150 q^{-90} +93 q^{-91} -121 q^{-92} -105 q^{-93} -103 q^{-94} -115 q^{-95} +55 q^{-96} +71 q^{-97} +79 q^{-98} +77 q^{-99} -51 q^{-100} -23 q^{-101} -27 q^{-102} -62 q^{-103} +19 q^{-104} +15 q^{-105} +30 q^{-106} +42 q^{-107} -36 q^{-108} -13 q^{-109} -4 q^{-110} -25 q^{-111} +18 q^{-112} +3 q^{-113} +14 q^{-114} +27 q^{-115} -21 q^{-116} -13 q^{-117} -5 q^{-118} -12 q^{-119} +10 q^{-120} + q^{-121} +6 q^{-122} +17 q^{-123} -7 q^{-124} -6 q^{-125} -3 q^{-126} -7 q^{-127} +4 q^{-128} - q^{-129} + q^{-130} +7 q^{-131} - q^{-132} -2 q^{-133} -2 q^{-135} + q^{-136} - q^{-137} +2 q^{-139} - q^{-140} </math>}}
coloured_jones_4 = <math>q^{50}-2 q^{49}+q^{47}-q^{46}+5 q^{45}-5 q^{44}+q^{43}-7 q^{41}+13 q^{40}-7 q^{39}+6 q^{38}+2 q^{37}-22 q^{36}+16 q^{35}-11 q^{34}+21 q^{33}+15 q^{32}-40 q^{31}+10 q^{30}-31 q^{29}+36 q^{28}+44 q^{27}-40 q^{26}+10 q^{25}-72 q^{24}+26 q^{23}+66 q^{22}-17 q^{21}+47 q^{20}-110 q^{19}-15 q^{18}+52 q^{17}+2 q^{16}+120 q^{15}-113 q^{14}-57 q^{13}+4 q^{12}-6 q^{11}+194 q^{10}-90 q^9-77 q^8-42 q^7-30 q^6+237 q^5-66 q^4-76 q^3-67 q^2-50 q+251-50 q^{-1} -67 q^{-2} -76 q^{-3} -66 q^{-4} +237 q^{-5} -30 q^{-6} -42 q^{-7} -77 q^{-8} -90 q^{-9} +194 q^{-10} -6 q^{-11} +4 q^{-12} -57 q^{-13} -113 q^{-14} +120 q^{-15} +2 q^{-16} +52 q^{-17} -15 q^{-18} -110 q^{-19} +47 q^{-20} -17 q^{-21} +66 q^{-22} +26 q^{-23} -72 q^{-24} +10 q^{-25} -40 q^{-26} +44 q^{-27} +36 q^{-28} -31 q^{-29} +10 q^{-30} -40 q^{-31} +15 q^{-32} +21 q^{-33} -11 q^{-34} +16 q^{-35} -22 q^{-36} +2 q^{-37} +6 q^{-38} -7 q^{-39} +13 q^{-40} -7 q^{-41} + q^{-43} -5 q^{-44} +5 q^{-45} - q^{-46} + q^{-47} -2 q^{-49} + q^{-50} </math> |

coloured_jones_5 = <math>-q^{75}+2 q^{74}-q^{72}+q^{71}-2 q^{70}-3 q^{69}+3 q^{68}+3 q^{67}+4 q^{65}-3 q^{64}-11 q^{63}-2 q^{62}+6 q^{61}+7 q^{60}+12 q^{59}+2 q^{58}-19 q^{57}-20 q^{56}-q^{55}+13 q^{54}+31 q^{53}+21 q^{52}-16 q^{51}-44 q^{50}-34 q^{49}+2 q^{48}+50 q^{47}+60 q^{46}+16 q^{45}-47 q^{44}-78 q^{43}-48 q^{42}+28 q^{41}+86 q^{40}+81 q^{39}+8 q^{38}-73 q^{37}-99 q^{36}-63 q^{35}+30 q^{34}+108 q^{33}+106 q^{32}+34 q^{31}-61 q^{30}-151 q^{29}-125 q^{28}+13 q^{27}+148 q^{26}+196 q^{25}+104 q^{24}-130 q^{23}-279 q^{22}-189 q^{21}+66 q^{20}+309 q^{19}+315 q^{18}+q^{17}-340 q^{16}-387 q^{15}-85 q^{14}+331 q^{13}+468 q^{12}+144 q^{11}-323 q^{10}-495 q^9-207 q^8+301 q^7+535 q^6+231 q^5-292 q^4-526 q^3-264 q^2+267 q+553+267 q^{-1} -264 q^{-2} -526 q^{-3} -292 q^{-4} +231 q^{-5} +535 q^{-6} +301 q^{-7} -207 q^{-8} -495 q^{-9} -323 q^{-10} +144 q^{-11} +468 q^{-12} +331 q^{-13} -85 q^{-14} -387 q^{-15} -340 q^{-16} + q^{-17} +315 q^{-18} +309 q^{-19} +66 q^{-20} -189 q^{-21} -279 q^{-22} -130 q^{-23} +104 q^{-24} +196 q^{-25} +148 q^{-26} +13 q^{-27} -125 q^{-28} -151 q^{-29} -61 q^{-30} +34 q^{-31} +106 q^{-32} +108 q^{-33} +30 q^{-34} -63 q^{-35} -99 q^{-36} -73 q^{-37} +8 q^{-38} +81 q^{-39} +86 q^{-40} +28 q^{-41} -48 q^{-42} -78 q^{-43} -47 q^{-44} +16 q^{-45} +60 q^{-46} +50 q^{-47} +2 q^{-48} -34 q^{-49} -44 q^{-50} -16 q^{-51} +21 q^{-52} +31 q^{-53} +13 q^{-54} - q^{-55} -20 q^{-56} -19 q^{-57} +2 q^{-58} +12 q^{-59} +7 q^{-60} +6 q^{-61} -2 q^{-62} -11 q^{-63} -3 q^{-64} +4 q^{-65} +3 q^{-67} +3 q^{-68} -3 q^{-69} -2 q^{-70} + q^{-71} - q^{-72} +2 q^{-74} - q^{-75} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{105}-2 q^{104}+q^{102}-q^{101}+2 q^{100}+5 q^{98}-7 q^{97}-3 q^{96}+2 q^{95}-5 q^{94}+5 q^{93}+4 q^{92}+17 q^{91}-14 q^{90}-9 q^{89}-16 q^{87}+6 q^{86}+10 q^{85}+41 q^{84}-17 q^{83}-17 q^{82}-4 q^{81}-36 q^{80}-q^{79}+16 q^{78}+80 q^{77}-10 q^{76}-23 q^{75}-13 q^{74}-71 q^{73}-26 q^{72}+14 q^{71}+139 q^{70}+24 q^{69}-9 q^{68}-14 q^{67}-124 q^{66}-91 q^{65}-30 q^{64}+186 q^{63}+75 q^{62}+53 q^{61}+52 q^{60}-132 q^{59}-165 q^{58}-143 q^{57}+138 q^{56}+37 q^{55}+95 q^{54}+195 q^{53}+11 q^{52}-92 q^{51}-200 q^{50}+16 q^{49}-207 q^{48}-82 q^{47}+223 q^{46}+231 q^{45}+230 q^{44}+36 q^{43}+81 q^{42}-516 q^{41}-549 q^{40}-122 q^{39}+215 q^{38}+591 q^{37}+584 q^{36}+575 q^{35}-538 q^{34}-1032 q^{33}-798 q^{32}-240 q^{31}+638 q^{30}+1130 q^{29}+1376 q^{28}-136 q^{27}-1204 q^{26}-1453 q^{25}-940 q^{24}+308 q^{23}+1382 q^{22}+2104 q^{21}+446 q^{20}-1054 q^{19}-1817 q^{18}-1520 q^{17}-138 q^{16}+1355 q^{15}+2521 q^{14}+887 q^{13}-815 q^{12}-1917 q^{11}-1810 q^{10}-445 q^9+1242 q^8+2670 q^7+1089 q^6-659 q^5-1912 q^4-1893 q^3-579 q^2+1163 q+2699+1163 q^{-1} -579 q^{-2} -1893 q^{-3} -1912 q^{-4} -659 q^{-5} +1089 q^{-6} +2670 q^{-7} +1242 q^{-8} -445 q^{-9} -1810 q^{-10} -1917 q^{-11} -815 q^{-12} +887 q^{-13} +2521 q^{-14} +1355 q^{-15} -138 q^{-16} -1520 q^{-17} -1817 q^{-18} -1054 q^{-19} +446 q^{-20} +2104 q^{-21} +1382 q^{-22} +308 q^{-23} -940 q^{-24} -1453 q^{-25} -1204 q^{-26} -136 q^{-27} +1376 q^{-28} +1130 q^{-29} +638 q^{-30} -240 q^{-31} -798 q^{-32} -1032 q^{-33} -538 q^{-34} +575 q^{-35} +584 q^{-36} +591 q^{-37} +215 q^{-38} -122 q^{-39} -549 q^{-40} -516 q^{-41} +81 q^{-42} +36 q^{-43} +230 q^{-44} +231 q^{-45} +223 q^{-46} -82 q^{-47} -207 q^{-48} +16 q^{-49} -200 q^{-50} -92 q^{-51} +11 q^{-52} +195 q^{-53} +95 q^{-54} +37 q^{-55} +138 q^{-56} -143 q^{-57} -165 q^{-58} -132 q^{-59} +52 q^{-60} +53 q^{-61} +75 q^{-62} +186 q^{-63} -30 q^{-64} -91 q^{-65} -124 q^{-66} -14 q^{-67} -9 q^{-68} +24 q^{-69} +139 q^{-70} +14 q^{-71} -26 q^{-72} -71 q^{-73} -13 q^{-74} -23 q^{-75} -10 q^{-76} +80 q^{-77} +16 q^{-78} - q^{-79} -36 q^{-80} -4 q^{-81} -17 q^{-82} -17 q^{-83} +41 q^{-84} +10 q^{-85} +6 q^{-86} -16 q^{-87} -9 q^{-89} -14 q^{-90} +17 q^{-91} +4 q^{-92} +5 q^{-93} -5 q^{-94} +2 q^{-95} -3 q^{-96} -7 q^{-97} +5 q^{-98} +2 q^{-100} - q^{-101} + q^{-102} -2 q^{-104} + q^{-105} </math> |

coloured_jones_7 = <math>-q^{140}+2 q^{139}-q^{137}+q^{136}-2 q^{135}-2 q^{133}-q^{132}+7 q^{131}+q^{130}-q^{129}+4 q^{128}-7 q^{127}-3 q^{126}-6 q^{125}-7 q^{124}+17 q^{123}+6 q^{122}+q^{121}+10 q^{120}-12 q^{119}-5 q^{118}-13 q^{117}-21 q^{116}+27 q^{115}+14 q^{114}+3 q^{113}+18 q^{112}-25 q^{111}-4 q^{110}-13 q^{109}-36 q^{108}+42 q^{107}+30 q^{106}+15 q^{105}+19 q^{104}-62 q^{103}-27 q^{102}-23 q^{101}-51 q^{100}+77 q^{99}+79 q^{98}+71 q^{97}+55 q^{96}-115 q^{95}-103 q^{94}-105 q^{93}-121 q^{92}+93 q^{91}+150 q^{90}+198 q^{89}+198 q^{88}-76 q^{87}-156 q^{86}-240 q^{85}-305 q^{84}-14 q^{83}+106 q^{82}+267 q^{81}+397 q^{80}+112 q^{79}-8 q^{78}-206 q^{77}-410 q^{76}-176 q^{75}-131 q^{74}+48 q^{73}+314 q^{72}+150 q^{71}+217 q^{70}+142 q^{69}-88 q^{68}+62 q^{67}-160 q^{66}-289 q^{65}-216 q^{64}-460 q^{63}-125 q^{62}+261 q^{61}+477 q^{60}+972 q^{59}+675 q^{58}+78 q^{57}-529 q^{56}-1512 q^{55}-1450 q^{54}-731 q^{53}+277 q^{52}+1846 q^{51}+2262 q^{50}+1710 q^{49}+431 q^{48}-1878 q^{47}-3034 q^{46}-2852 q^{45}-1435 q^{44}+1503 q^{43}+3470 q^{42}+3975 q^{41}+2772 q^{40}-718 q^{39}-3639 q^{38}-4963 q^{37}-4104 q^{36}-306 q^{35}+3382 q^{34}+5632 q^{33}+5408 q^{32}+1485 q^{31}-2907 q^{30}-6028 q^{29}-6446 q^{28}-2598 q^{27}+2259 q^{26}+6138 q^{25}+7228 q^{24}+3551 q^{23}-1610 q^{22}-6059 q^{21}-7728 q^{20}-4287 q^{19}+1035 q^{18}+5906 q^{17}+8021 q^{16}+4764 q^{15}-614 q^{14}-5710 q^{13}-8128 q^{12}-5079 q^{11}+298 q^{10}+5565 q^9+8205 q^8+5231 q^7-162 q^6-5447 q^5-8167 q^4-5321 q^3+13 q^2+5376 q+8221+5376 q^{-1} +13 q^{-2} -5321 q^{-3} -8167 q^{-4} -5447 q^{-5} -162 q^{-6} +5231 q^{-7} +8205 q^{-8} +5565 q^{-9} +298 q^{-10} -5079 q^{-11} -8128 q^{-12} -5710 q^{-13} -614 q^{-14} +4764 q^{-15} +8021 q^{-16} +5906 q^{-17} +1035 q^{-18} -4287 q^{-19} -7728 q^{-20} -6059 q^{-21} -1610 q^{-22} +3551 q^{-23} +7228 q^{-24} +6138 q^{-25} +2259 q^{-26} -2598 q^{-27} -6446 q^{-28} -6028 q^{-29} -2907 q^{-30} +1485 q^{-31} +5408 q^{-32} +5632 q^{-33} +3382 q^{-34} -306 q^{-35} -4104 q^{-36} -4963 q^{-37} -3639 q^{-38} -718 q^{-39} +2772 q^{-40} +3975 q^{-41} +3470 q^{-42} +1503 q^{-43} -1435 q^{-44} -2852 q^{-45} -3034 q^{-46} -1878 q^{-47} +431 q^{-48} +1710 q^{-49} +2262 q^{-50} +1846 q^{-51} +277 q^{-52} -731 q^{-53} -1450 q^{-54} -1512 q^{-55} -529 q^{-56} +78 q^{-57} +675 q^{-58} +972 q^{-59} +477 q^{-60} +261 q^{-61} -125 q^{-62} -460 q^{-63} -216 q^{-64} -289 q^{-65} -160 q^{-66} +62 q^{-67} -88 q^{-68} +142 q^{-69} +217 q^{-70} +150 q^{-71} +314 q^{-72} +48 q^{-73} -131 q^{-74} -176 q^{-75} -410 q^{-76} -206 q^{-77} -8 q^{-78} +112 q^{-79} +397 q^{-80} +267 q^{-81} +106 q^{-82} -14 q^{-83} -305 q^{-84} -240 q^{-85} -156 q^{-86} -76 q^{-87} +198 q^{-88} +198 q^{-89} +150 q^{-90} +93 q^{-91} -121 q^{-92} -105 q^{-93} -103 q^{-94} -115 q^{-95} +55 q^{-96} +71 q^{-97} +79 q^{-98} +77 q^{-99} -51 q^{-100} -23 q^{-101} -27 q^{-102} -62 q^{-103} +19 q^{-104} +15 q^{-105} +30 q^{-106} +42 q^{-107} -36 q^{-108} -13 q^{-109} -4 q^{-110} -25 q^{-111} +18 q^{-112} +3 q^{-113} +14 q^{-114} +27 q^{-115} -21 q^{-116} -13 q^{-117} -5 q^{-118} -12 q^{-119} +10 q^{-120} + q^{-121} +6 q^{-122} +17 q^{-123} -7 q^{-124} -6 q^{-125} -3 q^{-126} -7 q^{-127} +4 q^{-128} - q^{-129} + q^{-130} +7 q^{-131} - q^{-132} -2 q^{-133} -2 q^{-135} + q^{-136} - q^{-137} +2 q^{-139} - q^{-140} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 17]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[20, 15, 1, 16], X[16, 7, 17, 8],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 17]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[12, 4, 13, 3], X[20, 15, 1, 16], X[16, 7, 17, 8],
X[18, 9, 19, 10], X[8, 17, 9, 18], X[10, 19, 11, 20],
X[18, 9, 19, 10], X[8, 17, 9, 18], X[10, 19, 11, 20],
X[14, 6, 15, 5], X[2, 12, 3, 11], X[4, 14, 5, 13]]</nowiki></pre></td></tr>
X[14, 6, 15, 5], X[2, 12, 3, 11], X[4, 14, 5, 13]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -9, 2, -10, 8, -1, 4, -6, 5, -7, 9, -2, 10, -8, 3, -4, 6,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 17]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 8, -1, 4, -6, 5, -7, 9, -2, 10, -8, 3, -4, 6,
-5, 7, -3]</nowiki></pre></td></tr>
-5, 7, -3]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 20, 8, 10]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 17]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, -1, -1, -1, 2, -1, 2, 2, 2, 2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 20, 8, 10]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 17]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 17]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, 2, -1, 2, 2, 2, 2}]</nowiki></code></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 17]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 1, 4, 2, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 17]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 5 7 2 3 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 17]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 17]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_17_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 17]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{FullyAmphicheiral, 1, 4, 2, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 17]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 5 7 2 3 4
9 + t - -- + -- - - - 7 t + 5 t - 3 t + t
9 + t - -- + -- - - - 7 t + 5 t - 3 t + t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 17]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 + 2 z + 7 z + 5 z + z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 17]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 17]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8
1 + 2 z + 7 z + 5 z + z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 17]], KnotSignature[Knot[10, 17]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{41, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 17]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 2 3 5 6 2 3 4 5
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 17]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 17]], KnotSignature[Knot[10, 17]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{41, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 17]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 3 5 6 2 3 4 5
7 - q + -- - -- + -- - - - 6 q + 5 q - 3 q + 2 q - q
7 - q + -- - -- + -- - - - 6 q + 5 q - 3 q + 2 q - q
4 3 2 q
4 3 2 q
q q q</nowiki></pre></td></tr>
q q q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 17]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -14 -10 -8 -6 2 2 6 8 10 14
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 17]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 17]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 -10 -8 -6 2 2 6 8 10 14
-1 - q - q + q + q + -- + 2 q + q + q - q - q
-1 - q - q + q + q + -- + 2 q + q + q - q - q
2
2
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 17]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4
2 2 2 7 z 2 2 4 5 z 2 4
2 2 2 7 z 2 2 4 5 z 2 4
5 - -- - 2 a + 16 z - ---- - 7 a z + 17 z - ---- - 5 a z +
5 - -- - 2 a + 16 z - ---- - 7 a z + 17 z - ---- - 5 a z +
Line 155: Line 193:
7 z - -- - a z + z
7 z - -- - a z + z
2
2
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 17]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2
2 2 z 3 z 5 2 3 z 8 z
2 2 z 3 z 5 2 3 z 8 z
5 + -- + 2 a + -- - --- - 3 a z + a z - 22 z + ---- - ---- -
5 + -- + 2 a + -- - --- - 3 a z + a z - 22 z + ---- - ---- -
Line 186: Line 228:
2 a z + 2 a z + 4 z + ---- + 2 a z + -- + a z
2 a z + 2 a z + 4 z + ---- + 2 a z + -- + a z
2 a
2 a
a</nowiki></pre></td></tr>
a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 17]], Vassiliev[3][Knot[10, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 0}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 17]], Vassiliev[3][Knot[10, 17]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 17]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4 1 1 1 2 1 3 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, 0}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 17]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 1 1 1 2 1 3 2
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
- + 4 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- +
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2
Line 203: Line 253:
7 4 9 4 11 5
7 4 9 4 11 5
q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 17], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 2 4 6 10 11 3 20 16 10 30 18
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 17], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 2 4 6 10 11 3 20 16 10 30 18
35 + q - --- + --- - --- + -- - -- - -- + -- - -- - -- + -- - -- -
35 + q - --- + --- - --- + -- - -- - -- + -- - -- - -- + -- - -- -
14 12 11 9 8 7 6 5 4 3 2
14 12 11 9 8 7 6 5 4 3 2
Line 216: Line 270:
9 11 12 14 15
9 11 12 14 15
10 q - 6 q + 4 q - 2 q + q</nowiki></pre></td></tr>
10 q - 6 q + 4 q - 2 q + q</nowiki></code></td></tr>
</table> }}

</table>

See/edit the [[Rolfsen_Splice_Template]].

[[Category:Knot Page]]

Latest revision as of 17:00, 1 September 2005

10 16.gif

10_16

10 18.gif

10_18

10 17.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 17's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 17 at Knotilus!


Knot presentations

Planar diagram presentation X6271 X12,4,13,3 X20,15,1,16 X16,7,17,8 X18,9,19,10 X8,17,9,18 X10,19,11,20 X14,6,15,5 X2,12,3,11 X4,14,5,13
Gauss code 1, -9, 2, -10, 8, -1, 4, -6, 5, -7, 9, -2, 10, -8, 3, -4, 6, -5, 7, -3
Dowker-Thistlethwaite code 6 12 14 16 18 2 4 20 8 10
Conway Notation [4114]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 17 ML.gif 10 17 AP.gif
[{4, 12}, {3, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 11}, {9, 4}, {2, 5}, {12, 10}, {1, 3}, {11, 2}, {10, 1}]

[edit Notes on presentations of 10 17]


Three dimensional invariants

Symmetry type Fully amphicheiral
Unknotting number 1
3-genus 4
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-6][-6]
Hyperbolic Volume 8.53676
A-Polynomial See Data:10 17/A-polynomial

[edit Notes for 10 17's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for 10 17's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 41, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 17. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-1012345χ
11          1-1
9         1 1
7        21 -1
5       31  2
3      32   -1
1     43    1
-1    34     1
-3   23      -1
-5  13       2
-7 12        -1
-9 1         1
-111          -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials