10 19: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 19 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,10,-8,1,-4,5,-6,7,-9,2,-10,8,-3,4,-7,6,-5,3/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=19|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,9,-2,10,-8,1,-4,5,-6,7,-9,2,-10,8,-3,4,-7,6,-5,3/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 73: | Line 40: | ||
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
||
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-13</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{13}-2 q^{12}-q^{11}+6 q^{10}-5 q^9-7 q^8+16 q^7-4 q^6-20 q^5+27 q^4+q^3-36 q^2+34 q+11-49 q^{-1} +33 q^{-2} +21 q^{-3} -52 q^{-4} +26 q^{-5} +25 q^{-6} -44 q^{-7} +18 q^{-8} +19 q^{-9} -29 q^{-10} +11 q^{-11} +9 q^{-12} -13 q^{-13} +5 q^{-14} +2 q^{-15} -3 q^{-16} + q^{-17} </math> | |
|||
coloured_jones_3 = <math>-q^{27}+2 q^{26}+q^{25}-2 q^{24}-5 q^{23}+4 q^{22}+9 q^{21}-2 q^{20}-18 q^{19}-q^{18}+24 q^{17}+12 q^{16}-31 q^{15}-26 q^{14}+34 q^{13}+41 q^{12}-28 q^{11}-61 q^{10}+24 q^9+70 q^8-5 q^7-87 q^6-3 q^5+87 q^4+26 q^3-96 q^2-36 q+87+59 q^{-1} -87 q^{-2} -69 q^{-3} +72 q^{-4} +86 q^{-5} -60 q^{-6} -93 q^{-7} +45 q^{-8} +96 q^{-9} -32 q^{-10} -91 q^{-11} +20 q^{-12} +82 q^{-13} -16 q^{-14} -66 q^{-15} +13 q^{-16} +52 q^{-17} -15 q^{-18} -36 q^{-19} +14 q^{-20} +26 q^{-21} -15 q^{-22} -15 q^{-23} +11 q^{-24} +10 q^{-25} -10 q^{-26} -4 q^{-27} +6 q^{-28} + q^{-29} -2 q^{-30} -2 q^{-31} +3 q^{-32} - q^{-33} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{13}-2 q^{12}-q^{11}+6 q^{10}-5 q^9-7 q^8+16 q^7-4 q^6-20 q^5+27 q^4+q^3-36 q^2+34 q+11-49 q^{-1} +33 q^{-2} +21 q^{-3} -52 q^{-4} +26 q^{-5} +25 q^{-6} -44 q^{-7} +18 q^{-8} +19 q^{-9} -29 q^{-10} +11 q^{-11} +9 q^{-12} -13 q^{-13} +5 q^{-14} +2 q^{-15} -3 q^{-16} + q^{-17} </math>|J3=<math>-q^{27}+2 q^{26}+q^{25}-2 q^{24}-5 q^{23}+4 q^{22}+9 q^{21}-2 q^{20}-18 q^{19}-q^{18}+24 q^{17}+12 q^{16}-31 q^{15}-26 q^{14}+34 q^{13}+41 q^{12}-28 q^{11}-61 q^{10}+24 q^9+70 q^8-5 q^7-87 q^6-3 q^5+87 q^4+26 q^3-96 q^2-36 q+87+59 q^{-1} -87 q^{-2} -69 q^{-3} +72 q^{-4} +86 q^{-5} -60 q^{-6} -93 q^{-7} +45 q^{-8} +96 q^{-9} -32 q^{-10} -91 q^{-11} +20 q^{-12} +82 q^{-13} -16 q^{-14} -66 q^{-15} +13 q^{-16} +52 q^{-17} -15 q^{-18} -36 q^{-19} +14 q^{-20} +26 q^{-21} -15 q^{-22} -15 q^{-23} +11 q^{-24} +10 q^{-25} -10 q^{-26} -4 q^{-27} +6 q^{-28} + q^{-29} -2 q^{-30} -2 q^{-31} +3 q^{-32} - q^{-33} </math>|J4=<math>q^{46}-2 q^{45}-q^{44}+2 q^{43}+q^{42}+6 q^{41}-8 q^{40}-7 q^{39}+2 q^{38}+2 q^{37}+27 q^{36}-10 q^{35}-23 q^{34}-13 q^{33}-12 q^{32}+66 q^{31}+13 q^{30}-22 q^{29}-43 q^{28}-73 q^{27}+89 q^{26}+57 q^{25}+32 q^{24}-44 q^{23}-168 q^{22}+56 q^{21}+62 q^{20}+123 q^{19}+29 q^{18}-233 q^{17}-9 q^{16}-15 q^{15}+179 q^{14}+148 q^{13}-223 q^{12}-38 q^{11}-141 q^{10}+157 q^9+241 q^8-160 q^7+4 q^6-254 q^5+77 q^4+276 q^3-83 q^2+90 q-331-20 q^{-1} +267 q^{-2} -6 q^{-3} +193 q^{-4} -382 q^{-5} -129 q^{-6} +228 q^{-7} +78 q^{-8} +302 q^{-9} -402 q^{-10} -238 q^{-11} +154 q^{-12} +136 q^{-13} +401 q^{-14} -354 q^{-15} -301 q^{-16} +52 q^{-17} +122 q^{-18} +437 q^{-19} -246 q^{-20} -265 q^{-21} -22 q^{-22} +40 q^{-23} +370 q^{-24} -137 q^{-25} -155 q^{-26} -29 q^{-27} -38 q^{-28} +237 q^{-29} -77 q^{-30} -51 q^{-31} +4 q^{-32} -65 q^{-33} +120 q^{-34} -52 q^{-35} -2 q^{-36} +25 q^{-37} -51 q^{-38} +51 q^{-39} -34 q^{-40} +9 q^{-41} +21 q^{-42} -29 q^{-43} +20 q^{-44} -15 q^{-45} +5 q^{-46} +9 q^{-47} -11 q^{-48} +6 q^{-49} -4 q^{-50} +2 q^{-51} +2 q^{-52} -3 q^{-53} + q^{-54} </math>|J5=<math>-q^{70}+2 q^{69}+q^{68}-2 q^{67}-q^{66}-2 q^{65}-2 q^{64}+6 q^{63}+9 q^{62}-2 q^{61}-7 q^{60}-10 q^{59}-13 q^{58}+7 q^{57}+29 q^{56}+21 q^{55}-2 q^{54}-28 q^{53}-49 q^{52}-27 q^{51}+37 q^{50}+70 q^{49}+60 q^{48}-3 q^{47}-87 q^{46}-115 q^{45}-44 q^{44}+71 q^{43}+154 q^{42}+128 q^{41}-17 q^{40}-173 q^{39}-203 q^{38}-80 q^{37}+129 q^{36}+266 q^{35}+202 q^{34}-43 q^{33}-270 q^{32}-298 q^{31}-107 q^{30}+199 q^{29}+378 q^{28}+251 q^{27}-84 q^{26}-343 q^{25}-377 q^{24}-115 q^{23}+277 q^{22}+445 q^{21}+257 q^{20}-92 q^{19}-409 q^{18}-436 q^{17}-90 q^{16}+323 q^{15}+473 q^{14}+319 q^{13}-126 q^{12}-518 q^{11}-484 q^{10}-71 q^9+410 q^8+645 q^7+323 q^6-329 q^5-715 q^4-528 q^3+133 q^2+790 q+752-10 q^{-1} -791 q^{-2} -921 q^{-3} -192 q^{-4} +833 q^{-5} +1109 q^{-6} +311 q^{-7} -831 q^{-8} -1269 q^{-9} -491 q^{-10} +861 q^{-11} +1453 q^{-12} +639 q^{-13} -857 q^{-14} -1622 q^{-15} -832 q^{-16} +834 q^{-17} +1770 q^{-18} +1030 q^{-19} -745 q^{-20} -1869 q^{-21} -1234 q^{-22} +608 q^{-23} +1880 q^{-24} +1388 q^{-25} -393 q^{-26} -1792 q^{-27} -1496 q^{-28} +178 q^{-29} +1602 q^{-30} +1489 q^{-31} +40 q^{-32} -1329 q^{-33} -1402 q^{-34} -205 q^{-35} +1037 q^{-36} +1211 q^{-37} +306 q^{-38} -740 q^{-39} -987 q^{-40} -330 q^{-41} +491 q^{-42} +736 q^{-43} +313 q^{-44} -300 q^{-45} -523 q^{-46} -240 q^{-47} +164 q^{-48} +326 q^{-49} +186 q^{-50} -79 q^{-51} -205 q^{-52} -112 q^{-53} +36 q^{-54} +97 q^{-55} +71 q^{-56} -2 q^{-57} -53 q^{-58} -39 q^{-59} +2 q^{-60} +17 q^{-61} +16 q^{-62} +6 q^{-63} -2 q^{-64} -12 q^{-65} -6 q^{-66} +8 q^{-67} - q^{-68} - q^{-69} +8 q^{-70} -6 q^{-71} -4 q^{-72} +6 q^{-73} - q^{-74} -3 q^{-75} +4 q^{-76} -2 q^{-77} -2 q^{-78} +3 q^{-79} - q^{-80} </math>|J6=<math>q^{99}-2 q^{98}-q^{97}+2 q^{96}+q^{95}+2 q^{94}-2 q^{93}+4 q^{92}-8 q^{91}-9 q^{90}+5 q^{89}+6 q^{88}+12 q^{87}-q^{86}+17 q^{85}-20 q^{84}-35 q^{83}-10 q^{82}+2 q^{81}+34 q^{80}+16 q^{79}+75 q^{78}-7 q^{77}-71 q^{76}-69 q^{75}-62 q^{74}+9 q^{73}+12 q^{72}+198 q^{71}+108 q^{70}-5 q^{69}-100 q^{68}-179 q^{67}-154 q^{66}-176 q^{65}+234 q^{64}+263 q^{63}+257 q^{62}+107 q^{61}-104 q^{60}-306 q^{59}-585 q^{58}-63 q^{57}+110 q^{56}+437 q^{55}+494 q^{54}+403 q^{53}-20 q^{52}-778 q^{51}-495 q^{50}-519 q^{49}+53 q^{48}+474 q^{47}+961 q^{46}+740 q^{45}-273 q^{44}-351 q^{43}-1029 q^{42}-761 q^{41}-368 q^{40}+775 q^{39}+1190 q^{38}+582 q^{37}+651 q^{36}-589 q^{35}-1061 q^{34}-1463 q^{33}-284 q^{32}+540 q^{31}+729 q^{30}+1742 q^{29}+757 q^{28}-137 q^{27}-1697 q^{26}-1314 q^{25}-984 q^{24}-422 q^{23}+1814 q^{22}+2006 q^{21}+1642 q^{20}-599 q^{19}-1286 q^{18}-2345 q^{17}-2379 q^{16}+536 q^{15}+2207 q^{14}+3249 q^{13}+1290 q^{12}+4 q^{11}-2711 q^{10}-4167 q^9-1507 q^8+1250 q^7+3967 q^6+3078 q^5+1959 q^4-2060 q^3-5182 q^2-3486 q-282+3821 q^{-1} +4267 q^{-2} +3832 q^{-3} -959 q^{-4} -5506 q^{-5} -4974 q^{-6} -1720 q^{-7} +3341 q^{-8} +4984 q^{-9} +5280 q^{-10} +6 q^{-11} -5644 q^{-12} -6126 q^{-13} -2826 q^{-14} +3018 q^{-15} +5699 q^{-16} +6509 q^{-17} +726 q^{-18} -5953 q^{-19} -7356 q^{-20} -3911 q^{-21} +2784 q^{-22} +6594 q^{-23} +7895 q^{-24} +1644 q^{-25} -6122 q^{-26} -8648 q^{-27} -5347 q^{-28} +2024 q^{-29} +7094 q^{-30} +9258 q^{-31} +3131 q^{-32} -5375 q^{-33} -9210 q^{-34} -6809 q^{-35} +403 q^{-36} +6336 q^{-37} +9672 q^{-38} +4702 q^{-39} -3485 q^{-40} -8205 q^{-41} -7289 q^{-42} -1423 q^{-43} +4292 q^{-44} +8435 q^{-45} +5297 q^{-46} -1318 q^{-47} -5863 q^{-48} -6223 q^{-49} -2361 q^{-50} +2001 q^{-51} +5998 q^{-52} +4498 q^{-53} +41 q^{-54} -3341 q^{-55} -4198 q^{-56} -2112 q^{-57} +486 q^{-58} +3521 q^{-59} +2950 q^{-60} +382 q^{-61} -1556 q^{-62} -2258 q^{-63} -1294 q^{-64} -122 q^{-65} +1767 q^{-66} +1541 q^{-67} +229 q^{-68} -606 q^{-69} -979 q^{-70} -579 q^{-71} -238 q^{-72} +783 q^{-73} +662 q^{-74} +50 q^{-75} -179 q^{-76} -338 q^{-77} -189 q^{-78} -195 q^{-79} +308 q^{-80} +240 q^{-81} -26 q^{-82} -18 q^{-83} -85 q^{-84} -39 q^{-85} -121 q^{-86} +109 q^{-87} +74 q^{-88} -35 q^{-89} +17 q^{-90} -13 q^{-91} +2 q^{-92} -58 q^{-93} +38 q^{-94} +19 q^{-95} -22 q^{-96} +13 q^{-97} -3 q^{-98} +7 q^{-99} -21 q^{-100} +13 q^{-101} +5 q^{-102} -11 q^{-103} +6 q^{-104} -2 q^{-105} +3 q^{-106} -4 q^{-107} +2 q^{-108} +2 q^{-109} -3 q^{-110} + q^{-111} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{46}-2 q^{45}-q^{44}+2 q^{43}+q^{42}+6 q^{41}-8 q^{40}-7 q^{39}+2 q^{38}+2 q^{37}+27 q^{36}-10 q^{35}-23 q^{34}-13 q^{33}-12 q^{32}+66 q^{31}+13 q^{30}-22 q^{29}-43 q^{28}-73 q^{27}+89 q^{26}+57 q^{25}+32 q^{24}-44 q^{23}-168 q^{22}+56 q^{21}+62 q^{20}+123 q^{19}+29 q^{18}-233 q^{17}-9 q^{16}-15 q^{15}+179 q^{14}+148 q^{13}-223 q^{12}-38 q^{11}-141 q^{10}+157 q^9+241 q^8-160 q^7+4 q^6-254 q^5+77 q^4+276 q^3-83 q^2+90 q-331-20 q^{-1} +267 q^{-2} -6 q^{-3} +193 q^{-4} -382 q^{-5} -129 q^{-6} +228 q^{-7} +78 q^{-8} +302 q^{-9} -402 q^{-10} -238 q^{-11} +154 q^{-12} +136 q^{-13} +401 q^{-14} -354 q^{-15} -301 q^{-16} +52 q^{-17} +122 q^{-18} +437 q^{-19} -246 q^{-20} -265 q^{-21} -22 q^{-22} +40 q^{-23} +370 q^{-24} -137 q^{-25} -155 q^{-26} -29 q^{-27} -38 q^{-28} +237 q^{-29} -77 q^{-30} -51 q^{-31} +4 q^{-32} -65 q^{-33} +120 q^{-34} -52 q^{-35} -2 q^{-36} +25 q^{-37} -51 q^{-38} +51 q^{-39} -34 q^{-40} +9 q^{-41} +21 q^{-42} -29 q^{-43} +20 q^{-44} -15 q^{-45} +5 q^{-46} +9 q^{-47} -11 q^{-48} +6 q^{-49} -4 q^{-50} +2 q^{-51} +2 q^{-52} -3 q^{-53} + q^{-54} </math> | |
|||
coloured_jones_5 = <math>-q^{70}+2 q^{69}+q^{68}-2 q^{67}-q^{66}-2 q^{65}-2 q^{64}+6 q^{63}+9 q^{62}-2 q^{61}-7 q^{60}-10 q^{59}-13 q^{58}+7 q^{57}+29 q^{56}+21 q^{55}-2 q^{54}-28 q^{53}-49 q^{52}-27 q^{51}+37 q^{50}+70 q^{49}+60 q^{48}-3 q^{47}-87 q^{46}-115 q^{45}-44 q^{44}+71 q^{43}+154 q^{42}+128 q^{41}-17 q^{40}-173 q^{39}-203 q^{38}-80 q^{37}+129 q^{36}+266 q^{35}+202 q^{34}-43 q^{33}-270 q^{32}-298 q^{31}-107 q^{30}+199 q^{29}+378 q^{28}+251 q^{27}-84 q^{26}-343 q^{25}-377 q^{24}-115 q^{23}+277 q^{22}+445 q^{21}+257 q^{20}-92 q^{19}-409 q^{18}-436 q^{17}-90 q^{16}+323 q^{15}+473 q^{14}+319 q^{13}-126 q^{12}-518 q^{11}-484 q^{10}-71 q^9+410 q^8+645 q^7+323 q^6-329 q^5-715 q^4-528 q^3+133 q^2+790 q+752-10 q^{-1} -791 q^{-2} -921 q^{-3} -192 q^{-4} +833 q^{-5} +1109 q^{-6} +311 q^{-7} -831 q^{-8} -1269 q^{-9} -491 q^{-10} +861 q^{-11} +1453 q^{-12} +639 q^{-13} -857 q^{-14} -1622 q^{-15} -832 q^{-16} +834 q^{-17} +1770 q^{-18} +1030 q^{-19} -745 q^{-20} -1869 q^{-21} -1234 q^{-22} +608 q^{-23} +1880 q^{-24} +1388 q^{-25} -393 q^{-26} -1792 q^{-27} -1496 q^{-28} +178 q^{-29} +1602 q^{-30} +1489 q^{-31} +40 q^{-32} -1329 q^{-33} -1402 q^{-34} -205 q^{-35} +1037 q^{-36} +1211 q^{-37} +306 q^{-38} -740 q^{-39} -987 q^{-40} -330 q^{-41} +491 q^{-42} +736 q^{-43} +313 q^{-44} -300 q^{-45} -523 q^{-46} -240 q^{-47} +164 q^{-48} +326 q^{-49} +186 q^{-50} -79 q^{-51} -205 q^{-52} -112 q^{-53} +36 q^{-54} +97 q^{-55} +71 q^{-56} -2 q^{-57} -53 q^{-58} -39 q^{-59} +2 q^{-60} +17 q^{-61} +16 q^{-62} +6 q^{-63} -2 q^{-64} -12 q^{-65} -6 q^{-66} +8 q^{-67} - q^{-68} - q^{-69} +8 q^{-70} -6 q^{-71} -4 q^{-72} +6 q^{-73} - q^{-74} -3 q^{-75} +4 q^{-76} -2 q^{-77} -2 q^{-78} +3 q^{-79} - q^{-80} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{99}-2 q^{98}-q^{97}+2 q^{96}+q^{95}+2 q^{94}-2 q^{93}+4 q^{92}-8 q^{91}-9 q^{90}+5 q^{89}+6 q^{88}+12 q^{87}-q^{86}+17 q^{85}-20 q^{84}-35 q^{83}-10 q^{82}+2 q^{81}+34 q^{80}+16 q^{79}+75 q^{78}-7 q^{77}-71 q^{76}-69 q^{75}-62 q^{74}+9 q^{73}+12 q^{72}+198 q^{71}+108 q^{70}-5 q^{69}-100 q^{68}-179 q^{67}-154 q^{66}-176 q^{65}+234 q^{64}+263 q^{63}+257 q^{62}+107 q^{61}-104 q^{60}-306 q^{59}-585 q^{58}-63 q^{57}+110 q^{56}+437 q^{55}+494 q^{54}+403 q^{53}-20 q^{52}-778 q^{51}-495 q^{50}-519 q^{49}+53 q^{48}+474 q^{47}+961 q^{46}+740 q^{45}-273 q^{44}-351 q^{43}-1029 q^{42}-761 q^{41}-368 q^{40}+775 q^{39}+1190 q^{38}+582 q^{37}+651 q^{36}-589 q^{35}-1061 q^{34}-1463 q^{33}-284 q^{32}+540 q^{31}+729 q^{30}+1742 q^{29}+757 q^{28}-137 q^{27}-1697 q^{26}-1314 q^{25}-984 q^{24}-422 q^{23}+1814 q^{22}+2006 q^{21}+1642 q^{20}-599 q^{19}-1286 q^{18}-2345 q^{17}-2379 q^{16}+536 q^{15}+2207 q^{14}+3249 q^{13}+1290 q^{12}+4 q^{11}-2711 q^{10}-4167 q^9-1507 q^8+1250 q^7+3967 q^6+3078 q^5+1959 q^4-2060 q^3-5182 q^2-3486 q-282+3821 q^{-1} +4267 q^{-2} +3832 q^{-3} -959 q^{-4} -5506 q^{-5} -4974 q^{-6} -1720 q^{-7} +3341 q^{-8} +4984 q^{-9} +5280 q^{-10} +6 q^{-11} -5644 q^{-12} -6126 q^{-13} -2826 q^{-14} +3018 q^{-15} +5699 q^{-16} +6509 q^{-17} +726 q^{-18} -5953 q^{-19} -7356 q^{-20} -3911 q^{-21} +2784 q^{-22} +6594 q^{-23} +7895 q^{-24} +1644 q^{-25} -6122 q^{-26} -8648 q^{-27} -5347 q^{-28} +2024 q^{-29} +7094 q^{-30} +9258 q^{-31} +3131 q^{-32} -5375 q^{-33} -9210 q^{-34} -6809 q^{-35} +403 q^{-36} +6336 q^{-37} +9672 q^{-38} +4702 q^{-39} -3485 q^{-40} -8205 q^{-41} -7289 q^{-42} -1423 q^{-43} +4292 q^{-44} +8435 q^{-45} +5297 q^{-46} -1318 q^{-47} -5863 q^{-48} -6223 q^{-49} -2361 q^{-50} +2001 q^{-51} +5998 q^{-52} +4498 q^{-53} +41 q^{-54} -3341 q^{-55} -4198 q^{-56} -2112 q^{-57} +486 q^{-58} +3521 q^{-59} +2950 q^{-60} +382 q^{-61} -1556 q^{-62} -2258 q^{-63} -1294 q^{-64} -122 q^{-65} +1767 q^{-66} +1541 q^{-67} +229 q^{-68} -606 q^{-69} -979 q^{-70} -579 q^{-71} -238 q^{-72} +783 q^{-73} +662 q^{-74} +50 q^{-75} -179 q^{-76} -338 q^{-77} -189 q^{-78} -195 q^{-79} +308 q^{-80} +240 q^{-81} -26 q^{-82} -18 q^{-83} -85 q^{-84} -39 q^{-85} -121 q^{-86} +109 q^{-87} +74 q^{-88} -35 q^{-89} +17 q^{-90} -13 q^{-91} +2 q^{-92} -58 q^{-93} +38 q^{-94} +19 q^{-95} -22 q^{-96} +13 q^{-97} -3 q^{-98} +7 q^{-99} -21 q^{-100} +13 q^{-101} +5 q^{-102} -11 q^{-103} +6 q^{-104} -2 q^{-105} +3 q^{-106} -4 q^{-107} +2 q^{-108} +2 q^{-109} -3 q^{-110} + q^{-111} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 19]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[15, 1, 16, 20], X[7, 17, 8, 16], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[3, 12, 4, 13], X[15, 1, 16, 20], X[7, 17, 8, 16], |
|||
X[19, 9, 20, 8], X[9, 19, 10, 18], X[17, 11, 18, 10], |
X[19, 9, 20, 8], X[9, 19, 10, 18], X[17, 11, 18, 10], |
||
X[5, 14, 6, 15], X[11, 2, 12, 3], X[13, 4, 14, 5]]</nowiki></ |
X[5, 14, 6, 15], X[11, 2, 12, 3], X[13, 4, 14, 5]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 19]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 9, -2, 10, -8, 1, -4, 5, -6, 7, -9, 2, -10, 8, -3, 4, -7, |
|||
6, -5, 3]</nowiki></ |
6, -5, 3]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 19]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 19]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 12, 14, 16, 18, 2, 4, 20, 10, 8]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -1, 2, -1, 2, 2, 3, -2, 3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 19]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_19_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 19]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 19]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 19]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 19]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_19_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 19]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 2, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 19]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 7 11 2 3 |
|||
-11 + -- - -- + -- + 11 t - 7 t + 2 t |
-11 + -- - -- + -- + 11 t - 7 t + 2 t |
||
3 2 t |
3 2 t |
||
t t</nowiki></ |
t t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 19]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 19]][z]</nowiki></code></td></tr> |
|||
1 + z + 5 z + 2 z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + z + 5 z + 2 z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 19]], KnotSignature[Knot[10, 19]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 3 5 7 8 8 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 19]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 19]], KnotSignature[Knot[10, 19]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{51, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 19]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -6 3 5 7 8 8 2 3 4 |
|||
-7 - q + -- - -- + -- - -- + - + 6 q - 3 q + 2 q - q |
-7 - q + -- - -- + -- - -- + - + 6 q - 3 q + 2 q - q |
||
5 4 3 2 q |
5 4 3 2 q |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 19]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 19]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 19]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -18 -16 -10 2 -6 -4 -2 4 12 |
|||
2 - q + q + q - -- + q - q + q + 2 q - q |
2 - q + q + q - -- + q - q + q + 2 q - q |
||
8 |
8 |
||
q</nowiki></ |
q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 19]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 19]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
-2 2 2 3 z 2 2 4 2 4 z 2 4 |
-2 2 2 3 z 2 2 4 2 4 z 2 4 |
||
3 - a - a + 5 z - ---- + a z - 2 a z + 4 z - -- + 3 a z - |
3 - a - a + 5 z - ---- + a z - 2 a z + 4 z - -- + 3 a z - |
||
Line 154: | Line 191: | ||
4 4 6 2 6 |
4 4 6 2 6 |
||
a z + z + a z</nowiki></ |
a z + z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 19]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 19]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 |
|||
-2 2 2 z 4 z 3 5 2 9 z |
-2 2 2 z 4 z 3 5 2 9 z |
||
3 + a + a - --- - --- - 2 a z + a z + a z - 13 z - ---- + |
3 + a + a - --- - --- - 2 a z + a z + a z - 13 z - ---- + |
||
Line 185: | Line 226: | ||
3 a z + 5 a z + 5 z + ---- + 3 a z + -- + a z |
3 a z + 5 a z + 5 z + ---- + 3 a z + -- + a z |
||
2 a |
2 a |
||
a</nowiki></ |
a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 19]], Vassiliev[3][Knot[10, 19]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 19]], Vassiliev[3][Knot[10, 19]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 19]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 19]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4 5 1 2 1 3 2 4 3 |
|||
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
-- + - + ------ + ------ + ----- + ----- + ----- + ----- + ----- + |
||
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
3 q 13 5 11 4 9 4 9 3 7 3 7 2 5 2 |
||
Line 202: | Line 251: | ||
5 4 7 4 9 5 |
5 4 7 4 9 5 |
||
q t + q t + q t</nowiki></ |
q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 19], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 19], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -17 3 2 5 13 9 11 29 19 18 44 |
|||
11 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + |
11 + q - --- + --- + --- - --- + --- + --- - --- + -- + -- - -- + |
||
16 15 14 13 12 11 10 9 8 7 |
16 15 14 13 12 11 10 9 8 7 |
||
Line 216: | Line 269: | ||
6 7 8 9 10 11 12 13 |
6 7 8 9 10 11 12 13 |
||
4 q + 16 q - 7 q - 5 q + 6 q - q - 2 q + q</nowiki></ |
4 q + 16 q - 7 q - 5 q + 6 q - q - 2 q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 19's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X3,12,4,13 X15,1,16,20 X7,17,8,16 X19,9,20,8 X9,19,10,18 X17,11,18,10 X5,14,6,15 X11,2,12,3 X13,4,14,5 |
Gauss code | -1, 9, -2, 10, -8, 1, -4, 5, -6, 7, -9, 2, -10, 8, -3, 4, -7, 6, -5, 3 |
Dowker-Thistlethwaite code | 6 12 14 16 18 2 4 20 10 8 |
Conway Notation | [41113] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{12, 7}, {2, 8}, {1, 6}, {7, 3}, {4, 2}, {3, 5}, {6, 4}, {5, 9}, {8, 10}, {9, 11}, {10, 12}, {11, 1}] |
[edit Notes on presentations of 10 19]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 19"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3,12,4,13 X15,1,16,20 X7,17,8,16 X19,9,20,8 X9,19,10,18 X17,11,18,10 X5,14,6,15 X11,2,12,3 X13,4,14,5 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 9, -2, 10, -8, 1, -4, 5, -6, 7, -9, 2, -10, 8, -3, 4, -7, 6, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 12 14 16 18 2 4 20 10 8 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[41113] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{12, 7}, {2, 8}, {1, 6}, {7, 3}, {4, 2}, {3, 5}, {6, 4}, {5, 9}, {8, 10}, {9, 11}, {10, 12}, {11, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 19"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 51, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 19"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (1, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 19. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|