10 126: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 126 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,-3,9,10,-2,-5,7,-6,8,-9,3,-4,5,-7,6,-8,4/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=126|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,-3,9,10,-2,-5,7,-6,8,-9,3,-4,5,-7,6,-8,4/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 3. |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 3. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
<td width=15.3846%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=7.69231%>-7</td ><td width=7.69231%>-6</td ><td width=7.69231%>-5</td ><td width=7.69231%>-4</td ><td width=7.69231%>-3</td ><td width=7.69231%>-2</td ><td width=7.69231%>-1</td ><td width=7.69231%>0</td ><td width=7.69231%>1</td ><td width=15.3846%>χ</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
||
Line 70: | Line 37: | ||
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-15</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-17</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>-1+ q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -7 q^{-6} +10 q^{-8} -9 q^{-9} - q^{-10} +10 q^{-11} -7 q^{-12} -3 q^{-13} +8 q^{-14} -4 q^{-15} -4 q^{-16} +5 q^{-17} - q^{-18} -3 q^{-19} +2 q^{-20} - q^{-22} + q^{-23} </math> | |
|||
coloured_jones_3 = <math>q^4-q^3-q^2-q+2+2 q^{-1} - q^{-2} -3 q^{-3} - q^{-4} +4 q^{-5} +4 q^{-6} -2 q^{-7} -9 q^{-8} +3 q^{-9} +10 q^{-10} +3 q^{-11} -16 q^{-12} - q^{-13} +13 q^{-14} +8 q^{-15} -19 q^{-16} -3 q^{-17} +14 q^{-18} +8 q^{-19} -16 q^{-20} -6 q^{-21} +11 q^{-22} +9 q^{-23} -10 q^{-24} -9 q^{-25} +5 q^{-26} +10 q^{-27} -2 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +4 q^{-32} -6 q^{-33} -3 q^{-34} +2 q^{-35} +4 q^{-36} -2 q^{-37} - q^{-38} +2 q^{-40} - q^{-41} + q^{-44} - q^{-45} </math> | |
|||
{{Display Coloured Jones|J2=<math>-1+ q^{-1} +2 q^{-2} -4 q^{-3} + q^{-4} +6 q^{-5} -7 q^{-6} +10 q^{-8} -9 q^{-9} - q^{-10} +10 q^{-11} -7 q^{-12} -3 q^{-13} +8 q^{-14} -4 q^{-15} -4 q^{-16} +5 q^{-17} - q^{-18} -3 q^{-19} +2 q^{-20} - q^{-22} + q^{-23} </math>|J3=<math>q^4-q^3-q^2-q+2+2 q^{-1} - q^{-2} -3 q^{-3} - q^{-4} +4 q^{-5} +4 q^{-6} -2 q^{-7} -9 q^{-8} +3 q^{-9} +10 q^{-10} +3 q^{-11} -16 q^{-12} - q^{-13} +13 q^{-14} +8 q^{-15} -19 q^{-16} -3 q^{-17} +14 q^{-18} +8 q^{-19} -16 q^{-20} -6 q^{-21} +11 q^{-22} +9 q^{-23} -10 q^{-24} -9 q^{-25} +5 q^{-26} +10 q^{-27} -2 q^{-28} -10 q^{-29} - q^{-30} +7 q^{-31} +4 q^{-32} -6 q^{-33} -3 q^{-34} +2 q^{-35} +4 q^{-36} -2 q^{-37} - q^{-38} +2 q^{-40} - q^{-41} + q^{-44} - q^{-45} </math>|J4=<math>-q^8+q^7+2 q^6-q^4-5 q^3-q^2+5 q+4+4 q^{-1} -8 q^{-2} -10 q^{-3} +3 q^{-4} +4 q^{-5} +15 q^{-6} + q^{-7} -15 q^{-8} -7 q^{-9} -10 q^{-10} +22 q^{-11} +19 q^{-12} -7 q^{-13} -13 q^{-14} -33 q^{-15} +18 q^{-16} +34 q^{-17} +6 q^{-18} -10 q^{-19} -51 q^{-20} +11 q^{-21} +39 q^{-22} +13 q^{-23} -3 q^{-24} -60 q^{-25} +8 q^{-26} +40 q^{-27} +14 q^{-28} - q^{-29} -59 q^{-30} +6 q^{-31} +36 q^{-32} +14 q^{-33} +5 q^{-34} -54 q^{-35} +26 q^{-37} +14 q^{-38} +16 q^{-39} -41 q^{-40} -8 q^{-41} +8 q^{-42} +9 q^{-43} +27 q^{-44} -21 q^{-45} -9 q^{-46} -7 q^{-47} -3 q^{-48} +26 q^{-49} -4 q^{-50} -10 q^{-52} -11 q^{-53} +14 q^{-54} +7 q^{-56} -3 q^{-57} -9 q^{-58} +5 q^{-59} -3 q^{-60} +5 q^{-61} + q^{-62} -4 q^{-63} +3 q^{-64} -3 q^{-65} + q^{-66} + q^{-67} -2 q^{-68} +2 q^{-69} - q^{-70} - q^{-73} + q^{-74} </math>|J5=<math>-q^{11}+2 q^9+2 q^8-q^6-6 q^5-5 q^4+3 q^3+8 q^2+8 q+4-7 q^{-1} -17 q^{-2} -11 q^{-3} +3 q^{-4} +16 q^{-5} +22 q^{-6} +11 q^{-7} -12 q^{-8} -29 q^{-9} -27 q^{-10} - q^{-11} +27 q^{-12} +44 q^{-13} +26 q^{-14} -20 q^{-15} -56 q^{-16} -47 q^{-17} -2 q^{-18} +60 q^{-19} +77 q^{-20} +20 q^{-21} -59 q^{-22} -89 q^{-23} -50 q^{-24} +53 q^{-25} +111 q^{-26} +60 q^{-27} -45 q^{-28} -107 q^{-29} -84 q^{-30} +37 q^{-31} +123 q^{-32} +79 q^{-33} -34 q^{-34} -107 q^{-35} -97 q^{-36} +28 q^{-37} +123 q^{-38} +84 q^{-39} -30 q^{-40} -108 q^{-41} -94 q^{-42} +24 q^{-43} +118 q^{-44} +86 q^{-45} -25 q^{-46} -103 q^{-47} -92 q^{-48} +14 q^{-49} +104 q^{-50} +86 q^{-51} -5 q^{-52} -85 q^{-53} -88 q^{-54} -10 q^{-55} +71 q^{-56} +79 q^{-57} +25 q^{-58} -45 q^{-59} -71 q^{-60} -37 q^{-61} +22 q^{-62} +53 q^{-63} +43 q^{-64} + q^{-65} -32 q^{-66} -42 q^{-67} -17 q^{-68} +13 q^{-69} +30 q^{-70} +23 q^{-71} +8 q^{-72} -17 q^{-73} -24 q^{-74} -13 q^{-75} +2 q^{-76} +12 q^{-77} +20 q^{-78} +6 q^{-79} -7 q^{-80} -10 q^{-81} -9 q^{-82} -4 q^{-83} +8 q^{-84} +7 q^{-85} +3 q^{-86} + q^{-87} -4 q^{-88} -6 q^{-89} + q^{-91} +4 q^{-93} + q^{-94} -3 q^{-95} -3 q^{-98} +2 q^{-99} +2 q^{-100} - q^{-101} + q^{-103} -2 q^{-104} + q^{-106} + q^{-109} - q^{-110} </math>|J6=<math>q^{20}-q^{19}-q^{18}-q^{14}+5 q^{13}+q^{12}-2 q^9-6 q^8-10 q^7+4 q^6+4 q^5+9 q^4+12 q^3+10 q^2-5 q-25-14 q^{-1} -14 q^{-2} -3 q^{-3} +18 q^{-4} +40 q^{-5} +33 q^{-6} -5 q^{-7} -15 q^{-8} -41 q^{-9} -57 q^{-10} -32 q^{-11} +30 q^{-12} +73 q^{-13} +60 q^{-14} +55 q^{-15} -6 q^{-16} -97 q^{-17} -125 q^{-18} -65 q^{-19} +35 q^{-20} +95 q^{-21} +165 q^{-22} +117 q^{-23} -51 q^{-24} -179 q^{-25} -194 q^{-26} -84 q^{-27} +47 q^{-28} +234 q^{-29} +259 q^{-30} +59 q^{-31} -160 q^{-32} -278 q^{-33} -203 q^{-34} -46 q^{-35} +241 q^{-36} +349 q^{-37} +154 q^{-38} -113 q^{-39} -303 q^{-40} -263 q^{-41} -117 q^{-42} +223 q^{-43} +380 q^{-44} +195 q^{-45} -84 q^{-46} -300 q^{-47} -273 q^{-48} -148 q^{-49} +210 q^{-50} +384 q^{-51} +202 q^{-52} -76 q^{-53} -295 q^{-54} -270 q^{-55} -152 q^{-56} +205 q^{-57} +380 q^{-58} +203 q^{-59} -72 q^{-60} -289 q^{-61} -267 q^{-62} -157 q^{-63} +191 q^{-64} +366 q^{-65} +213 q^{-66} -49 q^{-67} -263 q^{-68} -258 q^{-69} -180 q^{-70} +142 q^{-71} +322 q^{-72} +226 q^{-73} +11 q^{-74} -191 q^{-75} -225 q^{-76} -216 q^{-77} +47 q^{-78} +228 q^{-79} +216 q^{-80} +88 q^{-81} -73 q^{-82} -142 q^{-83} -222 q^{-84} -56 q^{-85} +91 q^{-86} +149 q^{-87} +120 q^{-88} +39 q^{-89} -21 q^{-90} -156 q^{-91} -95 q^{-92} -25 q^{-93} +42 q^{-94} +70 q^{-95} +72 q^{-96} +67 q^{-97} -52 q^{-98} -47 q^{-99} -52 q^{-100} -28 q^{-101} -9 q^{-102} +28 q^{-103} +67 q^{-104} +5 q^{-105} +14 q^{-106} -13 q^{-107} -22 q^{-108} -36 q^{-109} -14 q^{-110} +24 q^{-111} - q^{-112} +23 q^{-113} +12 q^{-114} +7 q^{-115} -17 q^{-116} -14 q^{-117} +4 q^{-118} -15 q^{-119} +5 q^{-120} +6 q^{-121} +13 q^{-122} -3 q^{-123} -3 q^{-124} +7 q^{-125} -11 q^{-126} -3 q^{-127} -2 q^{-128} +7 q^{-129} - q^{-130} - q^{-131} +8 q^{-132} -4 q^{-133} -2 q^{-134} -3 q^{-135} +3 q^{-136} - q^{-137} -2 q^{-138} +6 q^{-139} - q^{-140} - q^{-141} -2 q^{-142} + q^{-143} -2 q^{-145} +3 q^{-146} - q^{-149} - q^{-152} + q^{-153} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>-q^8+q^7+2 q^6-q^4-5 q^3-q^2+5 q+4+4 q^{-1} -8 q^{-2} -10 q^{-3} +3 q^{-4} +4 q^{-5} +15 q^{-6} + q^{-7} -15 q^{-8} -7 q^{-9} -10 q^{-10} +22 q^{-11} +19 q^{-12} -7 q^{-13} -13 q^{-14} -33 q^{-15} +18 q^{-16} +34 q^{-17} +6 q^{-18} -10 q^{-19} -51 q^{-20} +11 q^{-21} +39 q^{-22} +13 q^{-23} -3 q^{-24} -60 q^{-25} +8 q^{-26} +40 q^{-27} +14 q^{-28} - q^{-29} -59 q^{-30} +6 q^{-31} +36 q^{-32} +14 q^{-33} +5 q^{-34} -54 q^{-35} +26 q^{-37} +14 q^{-38} +16 q^{-39} -41 q^{-40} -8 q^{-41} +8 q^{-42} +9 q^{-43} +27 q^{-44} -21 q^{-45} -9 q^{-46} -7 q^{-47} -3 q^{-48} +26 q^{-49} -4 q^{-50} -10 q^{-52} -11 q^{-53} +14 q^{-54} +7 q^{-56} -3 q^{-57} -9 q^{-58} +5 q^{-59} -3 q^{-60} +5 q^{-61} + q^{-62} -4 q^{-63} +3 q^{-64} -3 q^{-65} + q^{-66} + q^{-67} -2 q^{-68} +2 q^{-69} - q^{-70} - q^{-73} + q^{-74} </math> | |
|||
coloured_jones_5 = <math>-q^{11}+2 q^9+2 q^8-q^6-6 q^5-5 q^4+3 q^3+8 q^2+8 q+4-7 q^{-1} -17 q^{-2} -11 q^{-3} +3 q^{-4} +16 q^{-5} +22 q^{-6} +11 q^{-7} -12 q^{-8} -29 q^{-9} -27 q^{-10} - q^{-11} +27 q^{-12} +44 q^{-13} +26 q^{-14} -20 q^{-15} -56 q^{-16} -47 q^{-17} -2 q^{-18} +60 q^{-19} +77 q^{-20} +20 q^{-21} -59 q^{-22} -89 q^{-23} -50 q^{-24} +53 q^{-25} +111 q^{-26} +60 q^{-27} -45 q^{-28} -107 q^{-29} -84 q^{-30} +37 q^{-31} +123 q^{-32} +79 q^{-33} -34 q^{-34} -107 q^{-35} -97 q^{-36} +28 q^{-37} +123 q^{-38} +84 q^{-39} -30 q^{-40} -108 q^{-41} -94 q^{-42} +24 q^{-43} +118 q^{-44} +86 q^{-45} -25 q^{-46} -103 q^{-47} -92 q^{-48} +14 q^{-49} +104 q^{-50} +86 q^{-51} -5 q^{-52} -85 q^{-53} -88 q^{-54} -10 q^{-55} +71 q^{-56} +79 q^{-57} +25 q^{-58} -45 q^{-59} -71 q^{-60} -37 q^{-61} +22 q^{-62} +53 q^{-63} +43 q^{-64} + q^{-65} -32 q^{-66} -42 q^{-67} -17 q^{-68} +13 q^{-69} +30 q^{-70} +23 q^{-71} +8 q^{-72} -17 q^{-73} -24 q^{-74} -13 q^{-75} +2 q^{-76} +12 q^{-77} +20 q^{-78} +6 q^{-79} -7 q^{-80} -10 q^{-81} -9 q^{-82} -4 q^{-83} +8 q^{-84} +7 q^{-85} +3 q^{-86} + q^{-87} -4 q^{-88} -6 q^{-89} + q^{-91} +4 q^{-93} + q^{-94} -3 q^{-95} -3 q^{-98} +2 q^{-99} +2 q^{-100} - q^{-101} + q^{-103} -2 q^{-104} + q^{-106} + q^{-109} - q^{-110} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{20}-q^{19}-q^{18}-q^{14}+5 q^{13}+q^{12}-2 q^9-6 q^8-10 q^7+4 q^6+4 q^5+9 q^4+12 q^3+10 q^2-5 q-25-14 q^{-1} -14 q^{-2} -3 q^{-3} +18 q^{-4} +40 q^{-5} +33 q^{-6} -5 q^{-7} -15 q^{-8} -41 q^{-9} -57 q^{-10} -32 q^{-11} +30 q^{-12} +73 q^{-13} +60 q^{-14} +55 q^{-15} -6 q^{-16} -97 q^{-17} -125 q^{-18} -65 q^{-19} +35 q^{-20} +95 q^{-21} +165 q^{-22} +117 q^{-23} -51 q^{-24} -179 q^{-25} -194 q^{-26} -84 q^{-27} +47 q^{-28} +234 q^{-29} +259 q^{-30} +59 q^{-31} -160 q^{-32} -278 q^{-33} -203 q^{-34} -46 q^{-35} +241 q^{-36} +349 q^{-37} +154 q^{-38} -113 q^{-39} -303 q^{-40} -263 q^{-41} -117 q^{-42} +223 q^{-43} +380 q^{-44} +195 q^{-45} -84 q^{-46} -300 q^{-47} -273 q^{-48} -148 q^{-49} +210 q^{-50} +384 q^{-51} +202 q^{-52} -76 q^{-53} -295 q^{-54} -270 q^{-55} -152 q^{-56} +205 q^{-57} +380 q^{-58} +203 q^{-59} -72 q^{-60} -289 q^{-61} -267 q^{-62} -157 q^{-63} +191 q^{-64} +366 q^{-65} +213 q^{-66} -49 q^{-67} -263 q^{-68} -258 q^{-69} -180 q^{-70} +142 q^{-71} +322 q^{-72} +226 q^{-73} +11 q^{-74} -191 q^{-75} -225 q^{-76} -216 q^{-77} +47 q^{-78} +228 q^{-79} +216 q^{-80} +88 q^{-81} -73 q^{-82} -142 q^{-83} -222 q^{-84} -56 q^{-85} +91 q^{-86} +149 q^{-87} +120 q^{-88} +39 q^{-89} -21 q^{-90} -156 q^{-91} -95 q^{-92} -25 q^{-93} +42 q^{-94} +70 q^{-95} +72 q^{-96} +67 q^{-97} -52 q^{-98} -47 q^{-99} -52 q^{-100} -28 q^{-101} -9 q^{-102} +28 q^{-103} +67 q^{-104} +5 q^{-105} +14 q^{-106} -13 q^{-107} -22 q^{-108} -36 q^{-109} -14 q^{-110} +24 q^{-111} - q^{-112} +23 q^{-113} +12 q^{-114} +7 q^{-115} -17 q^{-116} -14 q^{-117} +4 q^{-118} -15 q^{-119} +5 q^{-120} +6 q^{-121} +13 q^{-122} -3 q^{-123} -3 q^{-124} +7 q^{-125} -11 q^{-126} -3 q^{-127} -2 q^{-128} +7 q^{-129} - q^{-130} - q^{-131} +8 q^{-132} -4 q^{-133} -2 q^{-134} -3 q^{-135} +3 q^{-136} - q^{-137} -2 q^{-138} +6 q^{-139} - q^{-140} - q^{-141} -2 q^{-142} + q^{-143} -2 q^{-145} +3 q^{-146} - q^{-149} - q^{-152} + q^{-153} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[15, 20, 16, 1], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 126]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[5, 14, 6, 15], X[15, 20, 16, 1], |
|||
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], |
X[9, 16, 10, 17], X[11, 18, 12, 19], X[17, 10, 18, 11], |
||
X[19, 12, 20, 13], X[13, 6, 14, 7], X[2, 8, 3, 7]]</nowiki></ |
X[19, 12, 20, 13], X[13, 6, 14, 7], X[2, 8, 3, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 126]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, |
|||
6, -8, 4]</nowiki></ |
6, -8, 4]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 126]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 126]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, -14, 2, -16, -18, -6, -20, -10, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 126]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, -1, -2, 1, 1, 1, -2}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 126]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_126_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 126]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 126]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 126]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 126]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_126_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 126]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 126]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 4 2 3 |
|||
-5 + t - -- + - + 4 t - 2 t + t |
-5 + t - -- + - + 4 t - 2 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 126]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 126]][z]</nowiki></code></td></tr> |
|||
1 + 5 z + 4 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 5 z + 4 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 126]], KnotSignature[Knot[10, 126]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{19, -2}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 -7 2 3 3 4 2 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 126]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 126]], KnotSignature[Knot[10, 126]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{19, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 126]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 -7 2 3 3 4 2 2 |
|||
-1 - q + q - -- + -- - -- + -- - -- + - |
-1 - q + q - -- + -- - -- + -- - -- + - |
||
6 5 4 3 2 q |
6 5 4 3 2 q |
||
q q q q q</nowiki></ |
q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 126]][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 126]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 126]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -24 -22 2 -18 -16 -14 3 2 2 -6 -4 |
|||
-1 - q - q - --- - q + q + q + --- + --- + -- + q - q |
-1 - q - q - --- - q + q + q + --- + --- + -- + q - q |
||
20 12 10 8 |
20 12 10 8 |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 126]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 126]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 |
|||
-2 a + 7 a - 4 a - 3 a z + 12 a z - 4 a z - a z + 6 a z - |
-2 a + 7 a - 4 a - 3 a z + 12 a z - 4 a z - a z + 6 a z - |
||
6 4 4 6 |
6 4 4 6 |
||
a z + a z</nowiki></ |
a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 126]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 126]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 7 9 |
|||
2 a + 7 a + 4 a - 2 a z - 6 a z - 8 a z - a z + 3 a z - |
2 a + 7 a + 4 a - 2 a z - 6 a z - 8 a z - a z + 3 a z - |
||
Line 164: | Line 205: | ||
3 7 5 7 7 7 4 8 6 8 |
3 7 5 7 7 7 4 8 6 8 |
||
a z + 2 a z + a z + a z + a z</nowiki></ |
a z + 2 a z + a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 126]], Vassiliev[3][Knot[10, 126]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 126]], Vassiliev[3][Knot[10, 126]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 126]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{5, -9}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 126]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 1 1 1 2 1 2 2 1 |
|||
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
-- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- + |
||
3 q 17 7 13 6 13 5 11 4 9 4 9 3 7 3 |
3 q 17 7 13 6 13 5 11 4 9 4 9 3 7 3 |
||
Line 178: | Line 227: | ||
----- + ----- + ---- + q t |
----- + ----- + ---- + q t |
||
7 2 5 2 3 |
7 2 5 2 3 |
||
q t q t q t</nowiki></ |
q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 126], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 126], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 -22 2 3 -18 5 4 4 8 3 |
|||
-1 + q - q + --- - --- - q + --- - --- - --- + --- - --- - |
-1 + q - q + --- - --- - q + --- - --- - --- + --- - --- - |
||
20 19 17 16 15 14 13 |
20 19 17 16 15 14 13 |
||
Line 189: | Line 242: | ||
--- + --- - q - -- + -- - -- + -- + q - -- + -- + - |
--- + --- - q - -- + -- - -- + -- + q - -- + -- + - |
||
12 11 9 8 6 5 3 2 q |
12 11 9 8 6 5 3 2 q |
||
q q q q q q q q</nowiki></ |
q q q q q q q q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:00, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 126's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
10_126 is also known as the pretzel knot P(-5,3,2). |
Knot presentations
Planar diagram presentation | X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X2837 |
Gauss code | 1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4 |
Dowker-Thistlethwaite code | 4 8 -14 2 -16 -18 -6 -20 -10 -12 |
Conway Notation | [41,3,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{3, 10}, {2, 4}, {1, 3}, {13, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 13}, {12, 2}, {9, 1}] |
[edit Notes on presentations of 10 126]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 126"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X5,14,6,15 X15,20,16,1 X9,16,10,17 X11,18,12,19 X17,10,18,11 X19,12,20,13 X13,6,14,7 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, -3, 9, 10, -2, -5, 7, -6, 8, -9, 3, -4, 5, -7, 6, -8, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -14 2 -16 -18 -6 -20 -10 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[41,3,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 10}, {2, 4}, {1, 3}, {13, 11}, {10, 12}, {11, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 13}, {12, 2}, {9, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 126"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 19, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 126"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (5, -9) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 126. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|