10 153: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(2 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! --> |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
|||
<!-- --> |
|||
n = 10 | |
|||
<!-- provide an anchor so we can return to the top of the page --> |
|||
k = 153 | |
|||
<span id="top"></span> |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-9,10,-2,-5,6,9,-3,-4,8,-7,5,-6,4,-8,7/goTop.html | |
|||
<!-- --> |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<!-- this relies on transclusion for next and previous links --> |
|||
{{Knot Navigation Links|ext=gif}} |
|||
{{Rolfsen Knot Page Header|n=10|k=153|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-10,2,-1,3,-9,10,-2,-5,6,9,-3,-4,8,-7,5,-6,4,-8,7/goTop.html}} |
|||
<br style="clear:both" /> |
|||
{{:{{PAGENAME}} Further Notes and Views}} |
|||
{{Knot Presentations}} |
|||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr> |
||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr> |
||
</table> |
</table> | |
||
braid_crossings = 11 | |
|||
braid_width = 4 | |
|||
[[Invariants from Braid Theory|Length]] is 11, width is 4. |
|||
braid_index = 4 | |
|||
same_alexander = | |
|||
[[Invariants from Braid Theory|Braid index]] is 4. |
|||
same_jones = | |
|||
</td> |
|||
khovanov_table = <table border=1> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
|||
{{4D Invariants}} |
|||
{{Polynomial Invariants}} |
|||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{...} |
|||
{{Vassiliev Invariants}} |
|||
{{Khovanov Homology|table=<table border=1> |
|||
<tr align=center> |
<tr align=center> |
||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td>0</td></tr> |
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td>0</td></tr> |
||
Line 72: | Line 39: | ||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = <math>q^{13}-q^{12}-q^{11}+2 q^{10}-q^9-q^8+q^7-2 q^6+2 q^5+q^4-5 q^3+4 q^2+3 q-6+4 q^{-1} +4 q^{-2} -7 q^{-3} +4 q^{-4} +3 q^{-5} -5 q^{-6} + q^{-7} +2 q^{-8} - q^{-9} -2 q^{-10} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{27}+q^{26}+q^{25}-2 q^{23}+2 q^{21}-q^{19}+2 q^{17}-3 q^{16}-2 q^{15}+3 q^{14}+5 q^{13}-3 q^{12}-7 q^{11}+7 q^9+2 q^8-4 q^7-6 q^6+q^5+6 q^4+4 q^3-5 q^2-8 q+7+10 q^{-1} -4 q^{-2} -12 q^{-3} +5 q^{-4} +12 q^{-5} -4 q^{-6} -13 q^{-7} +5 q^{-8} +13 q^{-9} -4 q^{-10} -13 q^{-11} +2 q^{-12} +11 q^{-13} + q^{-14} -9 q^{-15} -4 q^{-16} +5 q^{-17} +4 q^{-18} - q^{-19} -3 q^{-20} -2 q^{-21} + q^{-22} +2 q^{-23} +2 q^{-24} - q^{-25} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} </math> | |
|||
{{Display Coloured Jones|J2=<math>q^{13}-q^{12}-q^{11}+2 q^{10}-q^9-q^8+q^7-2 q^6+2 q^5+q^4-5 q^3+4 q^2+3 q-6+4 q^{-1} +4 q^{-2} -7 q^{-3} +4 q^{-4} +3 q^{-5} -5 q^{-6} + q^{-7} +2 q^{-8} - q^{-9} -2 q^{-10} +2 q^{-12} - q^{-13} - q^{-14} + q^{-15} </math>|J3=<math>-q^{27}+q^{26}+q^{25}-2 q^{23}+2 q^{21}-q^{19}+2 q^{17}-3 q^{16}-2 q^{15}+3 q^{14}+5 q^{13}-3 q^{12}-7 q^{11}+7 q^9+2 q^8-4 q^7-6 q^6+q^5+6 q^4+4 q^3-5 q^2-8 q+7+10 q^{-1} -4 q^{-2} -12 q^{-3} +5 q^{-4} +12 q^{-5} -4 q^{-6} -13 q^{-7} +5 q^{-8} +13 q^{-9} -4 q^{-10} -13 q^{-11} +2 q^{-12} +11 q^{-13} + q^{-14} -9 q^{-15} -4 q^{-16} +5 q^{-17} +4 q^{-18} - q^{-19} -3 q^{-20} -2 q^{-21} + q^{-22} +2 q^{-23} +2 q^{-24} - q^{-25} -2 q^{-26} + q^{-28} + q^{-29} - q^{-30} </math>|J4=<math>q^{46}-q^{45}-q^{44}+3 q^{41}-q^{40}-q^{39}-q^{38}-q^{37}+3 q^{36}-q^{35}-q^{33}+2 q^{32}+3 q^{31}-3 q^{30}-3 q^{29}-5 q^{28}+5 q^{27}+6 q^{26}+3 q^{25}-q^{24}-10 q^{23}-q^{22}+4 q^{20}+6 q^{19}+q^{18}+2 q^{17}-8 q^{16}-10 q^{15}-3 q^{14}+8 q^{13}+17 q^{12}+7 q^{11}-17 q^{10}-22 q^9-5 q^8+20 q^7+32 q^6-5 q^5-29 q^4-24 q^3+7 q^2+48 q+10-28 q^{-1} -34 q^{-2} -4 q^{-3} +54 q^{-4} +14 q^{-5} -26 q^{-6} -36 q^{-7} -7 q^{-8} +55 q^{-9} +14 q^{-10} -26 q^{-11} -35 q^{-12} -8 q^{-13} +53 q^{-14} +16 q^{-15} -21 q^{-16} -36 q^{-17} -15 q^{-18} +44 q^{-19} +21 q^{-20} -5 q^{-21} -29 q^{-22} -26 q^{-23} +19 q^{-24} +19 q^{-25} +16 q^{-26} -9 q^{-27} -23 q^{-28} -4 q^{-29} +2 q^{-30} +15 q^{-31} +7 q^{-32} -4 q^{-33} -5 q^{-34} -6 q^{-35} +3 q^{-37} +3 q^{-38} +2 q^{-39} + q^{-40} -3 q^{-41} -2 q^{-42} - q^{-43} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} </math>|J5=<math>-q^{70}+q^{69}+q^{68}-q^{65}-2 q^{64}+2 q^{62}+q^{61}+q^{60}-q^{59}-q^{58}-q^{57}+q^{55}+q^{54}-3 q^{53}-q^{52}+2 q^{51}+2 q^{50}+4 q^{49}+2 q^{48}-5 q^{47}-7 q^{46}-3 q^{45}+5 q^{43}+8 q^{42}+4 q^{41}-q^{40}-4 q^{39}-5 q^{38}-6 q^{37}-3 q^{36}+4 q^{34}+11 q^{33}+11 q^{32}+6 q^{31}-8 q^{30}-19 q^{29}-20 q^{28}-6 q^{27}+13 q^{26}+31 q^{25}+26 q^{24}+2 q^{23}-23 q^{22}-41 q^{21}-29 q^{20}+5 q^{19}+37 q^{18}+49 q^{17}+25 q^{16}-20 q^{15}-55 q^{14}-53 q^{13}-14 q^{12}+49 q^{11}+74 q^{10}+40 q^9-23 q^8-80 q^7-75 q^6+4 q^5+83 q^4+87 q^3+22 q^2-72 q-108-33 q^{-1} +73 q^{-2} +106 q^{-3} +47 q^{-4} -66 q^{-5} -117 q^{-6} -46 q^{-7} +68 q^{-8} +111 q^{-9} +51 q^{-10} -65 q^{-11} -118 q^{-12} -47 q^{-13} +68 q^{-14} +112 q^{-15} +50 q^{-16} -65 q^{-17} -118 q^{-18} -48 q^{-19} +67 q^{-20} +113 q^{-21} +52 q^{-22} -59 q^{-23} -114 q^{-24} -60 q^{-25} +48 q^{-26} +106 q^{-27} +70 q^{-28} -25 q^{-29} -92 q^{-30} -79 q^{-31} -5 q^{-32} +67 q^{-33} +78 q^{-34} +33 q^{-35} -32 q^{-36} -65 q^{-37} -49 q^{-38} -4 q^{-39} +39 q^{-40} +48 q^{-41} +29 q^{-42} -8 q^{-43} -33 q^{-44} -32 q^{-45} -16 q^{-46} +10 q^{-47} +25 q^{-48} +21 q^{-49} +6 q^{-50} -5 q^{-51} -17 q^{-52} -13 q^{-53} - q^{-54} +2 q^{-55} +7 q^{-56} +8 q^{-57} +2 q^{-58} -2 q^{-59} - q^{-60} -4 q^{-61} -4 q^{-62} + q^{-64} +2 q^{-65} +2 q^{-66} +2 q^{-67} - q^{-68} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} </math>|J6=<math>q^{99}-q^{98}-q^{97}+q^{94}+3 q^{92}-q^{91}-2 q^{90}-q^{89}-q^{88}+4 q^{85}-q^{84}-2 q^{80}+q^{79}+4 q^{78}-4 q^{77}-2 q^{76}-2 q^{75}-3 q^{73}+6 q^{72}+9 q^{71}+q^{70}-q^{69}-2 q^{68}-5 q^{67}-13 q^{66}+3 q^{64}+3 q^{63}+4 q^{62}+10 q^{61}+8 q^{60}-5 q^{59}-3 q^{57}-11 q^{56}-16 q^{55}-6 q^{54}+3 q^{53}+5 q^{52}+17 q^{51}+28 q^{50}+16 q^{49}-5 q^{48}-20 q^{47}-25 q^{46}-38 q^{45}-24 q^{44}+16 q^{43}+33 q^{42}+46 q^{41}+36 q^{40}+30 q^{39}-28 q^{38}-59 q^{37}-54 q^{36}-50 q^{35}-8 q^{34}+32 q^{33}+99 q^{32}+69 q^{31}+44 q^{30}-8 q^{29}-84 q^{28}-117 q^{27}-106 q^{26}+8 q^{25}+56 q^{24}+146 q^{23}+147 q^{22}+61 q^{21}-73 q^{20}-184 q^{19}-159 q^{18}-119 q^{17}+72 q^{16}+200 q^{15}+236 q^{14}+110 q^{13}-85 q^{12}-214 q^{11}-287 q^{10}-100 q^9+110 q^8+293 q^7+262 q^6+75 q^5-165 q^4-352 q^3-225 q^2-q+276+325 q^{-1} +175 q^{-2} -116 q^{-3} -361 q^{-4} -273 q^{-5} -54 q^{-6} +258 q^{-7} +341 q^{-8} +208 q^{-9} -102 q^{-10} -362 q^{-11} -281 q^{-12} -65 q^{-13} +255 q^{-14} +343 q^{-15} +213 q^{-16} -101 q^{-17} -363 q^{-18} -282 q^{-19} -65 q^{-20} +255 q^{-21} +343 q^{-22} +213 q^{-23} -102 q^{-24} -359 q^{-25} -285 q^{-26} -70 q^{-27} +250 q^{-28} +346 q^{-29} +226 q^{-30} -93 q^{-31} -343 q^{-32} -298 q^{-33} -106 q^{-34} +208 q^{-35} +337 q^{-36} +270 q^{-37} -19 q^{-38} -269 q^{-39} -305 q^{-40} -194 q^{-41} +69 q^{-42} +253 q^{-43} +300 q^{-44} +121 q^{-45} -82 q^{-46} -215 q^{-47} -241 q^{-48} -116 q^{-49} +55 q^{-50} +195 q^{-51} +173 q^{-52} +109 q^{-53} -15 q^{-54} -123 q^{-55} -155 q^{-56} -97 q^{-57} - q^{-58} +51 q^{-59} +109 q^{-60} +92 q^{-61} +39 q^{-62} -32 q^{-63} -54 q^{-64} -64 q^{-65} -58 q^{-66} -4 q^{-67} +28 q^{-68} +47 q^{-69} +33 q^{-70} +30 q^{-71} - q^{-72} -27 q^{-73} -28 q^{-74} -22 q^{-75} -8 q^{-76} +18 q^{-78} +16 q^{-79} +10 q^{-80} +3 q^{-81} -2 q^{-82} -7 q^{-83} -8 q^{-84} -5 q^{-85} -2 q^{-86} + q^{-87} +2 q^{-88} +4 q^{-89} +3 q^{-90} +3 q^{-91} - q^{-92} - q^{-93} -2 q^{-94} -2 q^{-95} -2 q^{-96} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math>|J7=Not Available}} |
|||
coloured_jones_4 = <math>q^{46}-q^{45}-q^{44}+3 q^{41}-q^{40}-q^{39}-q^{38}-q^{37}+3 q^{36}-q^{35}-q^{33}+2 q^{32}+3 q^{31}-3 q^{30}-3 q^{29}-5 q^{28}+5 q^{27}+6 q^{26}+3 q^{25}-q^{24}-10 q^{23}-q^{22}+4 q^{20}+6 q^{19}+q^{18}+2 q^{17}-8 q^{16}-10 q^{15}-3 q^{14}+8 q^{13}+17 q^{12}+7 q^{11}-17 q^{10}-22 q^9-5 q^8+20 q^7+32 q^6-5 q^5-29 q^4-24 q^3+7 q^2+48 q+10-28 q^{-1} -34 q^{-2} -4 q^{-3} +54 q^{-4} +14 q^{-5} -26 q^{-6} -36 q^{-7} -7 q^{-8} +55 q^{-9} +14 q^{-10} -26 q^{-11} -35 q^{-12} -8 q^{-13} +53 q^{-14} +16 q^{-15} -21 q^{-16} -36 q^{-17} -15 q^{-18} +44 q^{-19} +21 q^{-20} -5 q^{-21} -29 q^{-22} -26 q^{-23} +19 q^{-24} +19 q^{-25} +16 q^{-26} -9 q^{-27} -23 q^{-28} -4 q^{-29} +2 q^{-30} +15 q^{-31} +7 q^{-32} -4 q^{-33} -5 q^{-34} -6 q^{-35} +3 q^{-37} +3 q^{-38} +2 q^{-39} + q^{-40} -3 q^{-41} -2 q^{-42} - q^{-43} +3 q^{-45} - q^{-48} - q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{70}+q^{69}+q^{68}-q^{65}-2 q^{64}+2 q^{62}+q^{61}+q^{60}-q^{59}-q^{58}-q^{57}+q^{55}+q^{54}-3 q^{53}-q^{52}+2 q^{51}+2 q^{50}+4 q^{49}+2 q^{48}-5 q^{47}-7 q^{46}-3 q^{45}+5 q^{43}+8 q^{42}+4 q^{41}-q^{40}-4 q^{39}-5 q^{38}-6 q^{37}-3 q^{36}+4 q^{34}+11 q^{33}+11 q^{32}+6 q^{31}-8 q^{30}-19 q^{29}-20 q^{28}-6 q^{27}+13 q^{26}+31 q^{25}+26 q^{24}+2 q^{23}-23 q^{22}-41 q^{21}-29 q^{20}+5 q^{19}+37 q^{18}+49 q^{17}+25 q^{16}-20 q^{15}-55 q^{14}-53 q^{13}-14 q^{12}+49 q^{11}+74 q^{10}+40 q^9-23 q^8-80 q^7-75 q^6+4 q^5+83 q^4+87 q^3+22 q^2-72 q-108-33 q^{-1} +73 q^{-2} +106 q^{-3} +47 q^{-4} -66 q^{-5} -117 q^{-6} -46 q^{-7} +68 q^{-8} +111 q^{-9} +51 q^{-10} -65 q^{-11} -118 q^{-12} -47 q^{-13} +68 q^{-14} +112 q^{-15} +50 q^{-16} -65 q^{-17} -118 q^{-18} -48 q^{-19} +67 q^{-20} +113 q^{-21} +52 q^{-22} -59 q^{-23} -114 q^{-24} -60 q^{-25} +48 q^{-26} +106 q^{-27} +70 q^{-28} -25 q^{-29} -92 q^{-30} -79 q^{-31} -5 q^{-32} +67 q^{-33} +78 q^{-34} +33 q^{-35} -32 q^{-36} -65 q^{-37} -49 q^{-38} -4 q^{-39} +39 q^{-40} +48 q^{-41} +29 q^{-42} -8 q^{-43} -33 q^{-44} -32 q^{-45} -16 q^{-46} +10 q^{-47} +25 q^{-48} +21 q^{-49} +6 q^{-50} -5 q^{-51} -17 q^{-52} -13 q^{-53} - q^{-54} +2 q^{-55} +7 q^{-56} +8 q^{-57} +2 q^{-58} -2 q^{-59} - q^{-60} -4 q^{-61} -4 q^{-62} + q^{-64} +2 q^{-65} +2 q^{-66} +2 q^{-67} - q^{-68} -2 q^{-69} - q^{-70} + q^{-73} + q^{-74} - q^{-75} </math> | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_6 = <math>q^{99}-q^{98}-q^{97}+q^{94}+3 q^{92}-q^{91}-2 q^{90}-q^{89}-q^{88}+4 q^{85}-q^{84}-2 q^{80}+q^{79}+4 q^{78}-4 q^{77}-2 q^{76}-2 q^{75}-3 q^{73}+6 q^{72}+9 q^{71}+q^{70}-q^{69}-2 q^{68}-5 q^{67}-13 q^{66}+3 q^{64}+3 q^{63}+4 q^{62}+10 q^{61}+8 q^{60}-5 q^{59}-3 q^{57}-11 q^{56}-16 q^{55}-6 q^{54}+3 q^{53}+5 q^{52}+17 q^{51}+28 q^{50}+16 q^{49}-5 q^{48}-20 q^{47}-25 q^{46}-38 q^{45}-24 q^{44}+16 q^{43}+33 q^{42}+46 q^{41}+36 q^{40}+30 q^{39}-28 q^{38}-59 q^{37}-54 q^{36}-50 q^{35}-8 q^{34}+32 q^{33}+99 q^{32}+69 q^{31}+44 q^{30}-8 q^{29}-84 q^{28}-117 q^{27}-106 q^{26}+8 q^{25}+56 q^{24}+146 q^{23}+147 q^{22}+61 q^{21}-73 q^{20}-184 q^{19}-159 q^{18}-119 q^{17}+72 q^{16}+200 q^{15}+236 q^{14}+110 q^{13}-85 q^{12}-214 q^{11}-287 q^{10}-100 q^9+110 q^8+293 q^7+262 q^6+75 q^5-165 q^4-352 q^3-225 q^2-q+276+325 q^{-1} +175 q^{-2} -116 q^{-3} -361 q^{-4} -273 q^{-5} -54 q^{-6} +258 q^{-7} +341 q^{-8} +208 q^{-9} -102 q^{-10} -362 q^{-11} -281 q^{-12} -65 q^{-13} +255 q^{-14} +343 q^{-15} +213 q^{-16} -101 q^{-17} -363 q^{-18} -282 q^{-19} -65 q^{-20} +255 q^{-21} +343 q^{-22} +213 q^{-23} -102 q^{-24} -359 q^{-25} -285 q^{-26} -70 q^{-27} +250 q^{-28} +346 q^{-29} +226 q^{-30} -93 q^{-31} -343 q^{-32} -298 q^{-33} -106 q^{-34} +208 q^{-35} +337 q^{-36} +270 q^{-37} -19 q^{-38} -269 q^{-39} -305 q^{-40} -194 q^{-41} +69 q^{-42} +253 q^{-43} +300 q^{-44} +121 q^{-45} -82 q^{-46} -215 q^{-47} -241 q^{-48} -116 q^{-49} +55 q^{-50} +195 q^{-51} +173 q^{-52} +109 q^{-53} -15 q^{-54} -123 q^{-55} -155 q^{-56} -97 q^{-57} - q^{-58} +51 q^{-59} +109 q^{-60} +92 q^{-61} +39 q^{-62} -32 q^{-63} -54 q^{-64} -64 q^{-65} -58 q^{-66} -4 q^{-67} +28 q^{-68} +47 q^{-69} +33 q^{-70} +30 q^{-71} - q^{-72} -27 q^{-73} -28 q^{-74} -22 q^{-75} -8 q^{-76} +18 q^{-78} +16 q^{-79} +10 q^{-80} +3 q^{-81} -2 q^{-82} -7 q^{-83} -8 q^{-84} -5 q^{-85} -2 q^{-86} + q^{-87} +2 q^{-88} +4 q^{-89} +3 q^{-90} +3 q^{-91} - q^{-92} - q^{-93} -2 q^{-94} -2 q^{-95} -2 q^{-96} +3 q^{-98} + q^{-100} - q^{-103} - q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = | |
|||
<table> |
|||
computer_talk = |
|||
<tr valign=top> |
|||
<table> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<tr valign=top> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
</tr> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 153]]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[13, 18, 14, 19], |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 153]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[13, 18, 14, 19], |
|||
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], |
X[9, 16, 10, 17], X[17, 10, 18, 11], X[15, 20, 16, 1], |
||
X[19, 14, 20, 15], X[6, 12, 7, 11], X[2, 8, 3, 7]]</nowiki></ |
X[19, 14, 20, 15], X[6, 12, 7, 11], X[2, 8, 3, 7]]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 153]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 153]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, |
|||
4, -8, 7]</nowiki></ |
4, -8, 7]</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 153]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 153]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 153]]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[4, 8, 12, 2, -16, 6, -18, -20, -10, -14]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 11}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 153]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>4</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[4, {-1, -1, -1, -2, -1, -1, 3, 2, 2, 2, 3}]</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 153]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_153_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 153]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 153]][t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 11}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 153]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>4</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 153]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_153_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 153]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 153]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 -2 1 2 3 |
|||
3 + t - t - - - t - t + t |
3 + t - t - - - t - t + t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 153]][z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 153]][z]</nowiki></code></td></tr> |
|||
1 + 4 z + 5 z + z</nowiki></pre></td></tr> |
|||
<tr align=left> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 4 z + 5 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 153]], KnotSignature[Knot[10, 153]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 0}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -4 -3 -2 2 3 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
1 - q + q - q + q + q - q + q - q</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 153]}</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 153]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 153]], KnotSignature[Knot[10, 153]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 -10 2 2 2 8 10 12 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{1, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 153]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 -4 -3 -2 2 3 4 |
|||
1 - q + q - q + q + q - q + q - q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 153]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 153]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -16 -12 -10 2 2 2 8 10 12 |
|||
3 - q - q - q + -- + -- + 2 q - q - q - q |
3 - q - q - q + -- + -- + 2 q - q - q - q |
||
4 2 |
4 2 |
||
q q</nowiki></ |
q q</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 153]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 153]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
3 2 4 2 4 z 2 2 4 2 4 z 6 |
3 2 4 2 4 z 2 2 4 2 4 z 6 |
||
6 - -- - a - a + 10 z - ---- - a z - a z + 6 z - -- + z |
6 - -- - a - a + 10 z - ---- - a z - a z + 6 z - -- + z |
||
2 2 2 |
2 2 2 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 153]][a, z]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 153]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 2 4 5 z 10 z 3 5 2 |
|||
6 + -- + a - a - --- - ---- - 6 a z + 2 a z + 3 a z - 12 z - |
6 + -- + a - a - --- - ---- - 6 a z + 2 a z + 3 a z - 12 z - |
||
2 3 a |
2 3 a |
||
Line 171: | Line 212: | ||
a z - 7 z - ---- + a z + -- + ---- + a z + z + -- |
a z - 7 z - ---- + a z + -- + ---- + a z + z + -- |
||
2 3 a 2 |
2 3 a 2 |
||
a a a</nowiki></ |
a a a</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 153]], Vassiliev[3][Knot[10, 153]]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 153]], Vassiliev[3][Knot[10, 153]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 153]][q, t]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 153]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3 1 1 1 1 1 1 1 t |
|||
- + q + ------ + ----- + ----- + ----- + ----- + ---- + --- + - + |
- + q + ------ + ----- + ----- + ----- + ----- + ---- + --- + - + |
||
q 11 5 7 4 7 3 5 2 3 2 5 q t q |
q 11 5 7 4 7 3 5 2 3 2 5 q t q |
||
Line 183: | Line 232: | ||
3 2 3 2 5 3 5 4 9 5 |
3 2 3 2 5 3 5 4 9 5 |
||
q t + q t + q t + q t + q t + q t</nowiki></ |
q t + q t + q t + q t + q t + q t</nowiki></code></td></tr> |
||
</table> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 153], 2][q]</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 153], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 -14 -13 2 2 -9 2 -7 5 3 4 |
|||
-6 + q - q - q + --- - --- - q + -- + q - -- + -- + -- - |
-6 + q - q - q + --- - --- - q + -- + q - -- + -- + -- - |
||
12 10 8 6 5 4 |
12 10 8 6 5 4 |
||
Line 197: | Line 250: | ||
10 11 12 13 |
10 11 12 13 |
||
2 q - q - q + q</nowiki></ |
2 q - q - q + q</nowiki></code></td></tr> |
||
</table> }} |
|||
</table> |
|||
{| width=100% |
|||
|align=left|See/edit the [[Rolfsen_Splice_Template]]. |
|||
Back to the [[#top|top]]. |
|||
|align=right|{{Knot Navigation Links|ext=gif}} |
|||
|} |
|||
[[Category:Knot Page]] |
Latest revision as of 17:04, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 153's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
10_153 is not -colourable for any . See The Determinant and the Signature.
Knot presentations
Planar diagram presentation | X4251 X8493 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X2837 |
Gauss code | 1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7 |
Dowker-Thistlethwaite code | 4 8 12 2 -16 6 -18 -20 -10 -14 |
Conway Notation | [(3,2)-(21,2)] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{3, 9}, {2, 4}, {1, 3}, {10, 5}, {9, 2}, {11, 6}, {5, 7}, {4, 10}, {6, 8}, {7, 11}, {8, 1}] |
[edit Notes on presentations of 10 153]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 153"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X12,6,13,5 X13,18,14,19 X9,16,10,17 X17,10,18,11 X15,20,16,1 X19,14,20,15 X6,12,7,11 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -10, 2, -1, 3, -9, 10, -2, -5, 6, 9, -3, -4, 8, -7, 5, -6, 4, -8, 7 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 12 2 -16 6 -18 -20 -10 -14 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[(3,2)-(21,2)] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{3, 9}, {2, 4}, {1, 3}, {10, 5}, {9, 2}, {11, 6}, {5, 7}, {4, 10}, {6, 8}, {7, 11}, {8, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 153"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 1, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 153"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 153. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|