10 64: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(2 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Rolfsen_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit!
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
<!-- -->
{{Rolfsen Knot Page|
<!-- -->
n = 10 |
<!-- provide an anchor so we can return to the top of the page -->
k = 64 |
<span id="top"></span>
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-6,5,-8,7,-1,3,-2,4,-10,9,-5,8,-7,6,-4,10,-9/goTop.html |
<!-- -->
braid_table = <table cellspacing=0 cellpadding=0 border=0>
<!-- this relies on transclusion for next and previous links -->
{{Knot Navigation Links|ext=gif}}

{{Rolfsen Knot Page Header|n=10|k=64|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-3,2,-6,5,-8,7,-1,3,-2,4,-10,9,-5,8,-7,6,-4,10,-9/goTop.html}}

<br style="clear:both" />

{{:{{PAGENAME}} Further Notes and Views}}

{{Knot Presentations}}

<center><table border=1 cellpadding=10><tr align=center valign=top>
<td>
[[Braid Representatives|Minimum Braid Representative]]:
<table cellspacing=0 cellpadding=0 border=0>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
</table>
</table> |
braid_crossings = 10 |

braid_width = 3 |
[[Invariants from Braid Theory|Length]] is 10, width is 3.
braid_index = 3 |

same_alexander = |
[[Invariants from Braid Theory|Braid index]] is 3.
same_jones = |
</td>
khovanov_table = <table border=1>
<td>
[[Lightly Documented Features|A Morse Link Presentation]]:

[[Image:{{PAGENAME}}_ML.gif]]
</td>
</tr></table></center>

{{3D Invariants}}
{{4D Invariants}}
{{Polynomial Invariants}}

=== "Similar" Knots (within the Atlas) ===

Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]:
{...}

Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>):
{...}

{{Vassiliev Invariants}}

{{Khovanov Homology|table=<table border=1>
<tr align=center>
<tr align=center>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<td width=13.3333%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>&chi;</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>15</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>13</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>-1</td></tr>
Line 72: Line 39:
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>q^{20}-2 q^{19}+q^{18}+3 q^{17}-8 q^{16}+5 q^{15}+10 q^{14}-22 q^{13}+9 q^{12}+26 q^{11}-42 q^{10}+9 q^9+42 q^8-53 q^7+5 q^6+50 q^5-48 q^4-5 q^3+48 q^2-33 q-13+35 q^{-1} -16 q^{-2} -13 q^{-3} +18 q^{-4} -4 q^{-5} -7 q^{-6} +6 q^{-7} -2 q^{-9} + q^{-10} </math> |

coloured_jones_3 = <math>q^{39}-2 q^{38}+q^{37}+q^{35}-3 q^{34}+3 q^{33}+q^{32}-3 q^{31}-5 q^{30}+11 q^{29}+6 q^{28}-17 q^{27}-18 q^{26}+29 q^{25}+35 q^{24}-41 q^{23}-57 q^{22}+44 q^{21}+94 q^{20}-51 q^{19}-120 q^{18}+44 q^{17}+149 q^{16}-36 q^{15}-168 q^{14}+22 q^{13}+175 q^{12}-3 q^{11}-178 q^{10}-13 q^9+165 q^8+37 q^7-151 q^6-54 q^5+127 q^4+75 q^3-105 q^2-82 q+73+89 q^{-1} -47 q^{-2} -82 q^{-3} +20 q^{-4} +72 q^{-5} -4 q^{-6} -51 q^{-7} -11 q^{-8} +37 q^{-9} +11 q^{-10} -19 q^{-11} -13 q^{-12} +12 q^{-13} +7 q^{-14} -4 q^{-15} -6 q^{-16} +3 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math> |
{{Display Coloured Jones|J2=<math>q^{20}-2 q^{19}+q^{18}+3 q^{17}-8 q^{16}+5 q^{15}+10 q^{14}-22 q^{13}+9 q^{12}+26 q^{11}-42 q^{10}+9 q^9+42 q^8-53 q^7+5 q^6+50 q^5-48 q^4-5 q^3+48 q^2-33 q-13+35 q^{-1} -16 q^{-2} -13 q^{-3} +18 q^{-4} -4 q^{-5} -7 q^{-6} +6 q^{-7} -2 q^{-9} + q^{-10} </math>|J3=<math>q^{39}-2 q^{38}+q^{37}+q^{35}-3 q^{34}+3 q^{33}+q^{32}-3 q^{31}-5 q^{30}+11 q^{29}+6 q^{28}-17 q^{27}-18 q^{26}+29 q^{25}+35 q^{24}-41 q^{23}-57 q^{22}+44 q^{21}+94 q^{20}-51 q^{19}-120 q^{18}+44 q^{17}+149 q^{16}-36 q^{15}-168 q^{14}+22 q^{13}+175 q^{12}-3 q^{11}-178 q^{10}-13 q^9+165 q^8+37 q^7-151 q^6-54 q^5+127 q^4+75 q^3-105 q^2-82 q+73+89 q^{-1} -47 q^{-2} -82 q^{-3} +20 q^{-4} +72 q^{-5} -4 q^{-6} -51 q^{-7} -11 q^{-8} +37 q^{-9} +11 q^{-10} -19 q^{-11} -13 q^{-12} +12 q^{-13} +7 q^{-14} -4 q^{-15} -6 q^{-16} +3 q^{-17} +2 q^{-18} -2 q^{-20} + q^{-21} </math>|J4=<math>q^{64}-2 q^{63}+q^{62}-2 q^{60}+6 q^{59}-6 q^{58}+3 q^{57}-q^{56}-8 q^{55}+19 q^{54}-12 q^{53}+4 q^{52}-6 q^{51}-24 q^{50}+46 q^{49}-8 q^{48}+14 q^{47}-26 q^{46}-76 q^{45}+71 q^{44}+21 q^{43}+86 q^{42}-29 q^{41}-203 q^{40}+17 q^{39}+38 q^{38}+267 q^{37}+73 q^{36}-357 q^{35}-154 q^{34}-56 q^{33}+485 q^{32}+313 q^{31}-420 q^{30}-361 q^{29}-269 q^{28}+610 q^{27}+569 q^{26}-358 q^{25}-472 q^{24}-489 q^{23}+593 q^{22}+714 q^{21}-237 q^{20}-453 q^{19}-625 q^{18}+487 q^{17}+726 q^{16}-109 q^{15}-345 q^{14}-683 q^{13}+332 q^{12}+651 q^{11}+26 q^{10}-183 q^9-682 q^8+130 q^7+504 q^6+161 q^5+24 q^4-607 q^3-80 q^2+288 q+225+220 q^{-1} -420 q^{-2} -196 q^{-3} +50 q^{-4} +160 q^{-5} +310 q^{-6} -183 q^{-7} -162 q^{-8} -93 q^{-9} +26 q^{-10} +246 q^{-11} -24 q^{-12} -50 q^{-13} -95 q^{-14} -54 q^{-15} +120 q^{-16} +13 q^{-17} +17 q^{-18} -39 q^{-19} -51 q^{-20} +40 q^{-21} + q^{-22} +20 q^{-23} -7 q^{-24} -23 q^{-25} +13 q^{-26} -4 q^{-27} +8 q^{-28} -8 q^{-30} +4 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math>|J5=<math>q^{95}-2 q^{94}+q^{93}-2 q^{91}+3 q^{90}+3 q^{89}-6 q^{88}+3 q^{86}-4 q^{85}+5 q^{84}+8 q^{83}-15 q^{82}-8 q^{81}+10 q^{80}+5 q^{79}+16 q^{78}+10 q^{77}-35 q^{76}-40 q^{75}+2 q^{74}+36 q^{73}+73 q^{72}+46 q^{71}-59 q^{70}-129 q^{69}-101 q^{68}+22 q^{67}+188 q^{66}+234 q^{65}+60 q^{64}-216 q^{63}-390 q^{62}-276 q^{61}+158 q^{60}+589 q^{59}+591 q^{58}+39 q^{57}-722 q^{56}-1016 q^{55}-424 q^{54}+747 q^{53}+1495 q^{52}+959 q^{51}-613 q^{50}-1886 q^{49}-1621 q^{48}+251 q^{47}+2213 q^{46}+2287 q^{45}+198 q^{44}-2294 q^{43}-2884 q^{42}-779 q^{41}+2261 q^{40}+3331 q^{39}+1296 q^{38}-2058 q^{37}-3582 q^{36}-1759 q^{35}+1789 q^{34}+3685 q^{33}+2082 q^{32}-1509 q^{31}-3638 q^{30}-2279 q^{29}+1221 q^{28}+3513 q^{27}+2403 q^{26}-985 q^{25}-3333 q^{24}-2437 q^{23}+718 q^{22}+3113 q^{21}+2480 q^{20}-466 q^{19}-2847 q^{18}-2479 q^{17}+130 q^{16}+2530 q^{15}+2490 q^{14}+205 q^{13}-2112 q^{12}-2422 q^{11}-617 q^{10}+1620 q^9+2302 q^8+971 q^7-1053 q^6-2016 q^5-1285 q^4+440 q^3+1658 q^2+1422 q+115-1142 q^{-1} -1411 q^{-2} -568 q^{-3} +622 q^{-4} +1196 q^{-5} +830 q^{-6} -109 q^{-7} -873 q^{-8} -891 q^{-9} -256 q^{-10} +468 q^{-11} +780 q^{-12} +479 q^{-13} -140 q^{-14} -549 q^{-15} -498 q^{-16} -128 q^{-17} +297 q^{-18} +437 q^{-19} +217 q^{-20} -88 q^{-21} -268 q^{-22} -246 q^{-23} -42 q^{-24} +149 q^{-25} +173 q^{-26} +88 q^{-27} -33 q^{-28} -113 q^{-29} -86 q^{-30} -4 q^{-31} +42 q^{-32} +60 q^{-33} +30 q^{-34} -21 q^{-35} -31 q^{-36} -14 q^{-37} -7 q^{-38} +14 q^{-39} +18 q^{-40} -2 q^{-41} -7 q^{-42} + q^{-43} -6 q^{-44} +7 q^{-46} - q^{-47} -4 q^{-48} +2 q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math>|J6=<math>q^{132}-2 q^{131}+q^{130}-2 q^{128}+3 q^{127}+3 q^{125}-9 q^{124}+4 q^{123}+6 q^{122}-9 q^{121}+5 q^{120}-q^{119}+5 q^{118}-21 q^{117}+12 q^{116}+28 q^{115}-18 q^{114}-q^{113}-12 q^{112}-5 q^{111}-46 q^{110}+36 q^{109}+95 q^{108}-6 q^{107}-11 q^{106}-55 q^{105}-70 q^{104}-136 q^{103}+54 q^{102}+250 q^{101}+115 q^{100}+78 q^{99}-78 q^{98}-250 q^{97}-460 q^{96}-138 q^{95}+373 q^{94}+420 q^{93}+565 q^{92}+307 q^{91}-282 q^{90}-1115 q^{89}-1030 q^{88}-207 q^{87}+420 q^{86}+1540 q^{85}+1830 q^{84}+901 q^{83}-1303 q^{82}-2658 q^{81}-2479 q^{80}-1387 q^{79}+1819 q^{78}+4390 q^{77}+4475 q^{76}+865 q^{75}-3407 q^{74}-6065 q^{73}-6164 q^{72}-770 q^{71}+5905 q^{70}+9619 q^{69}+6318 q^{68}-980 q^{67}-8423 q^{66}-12462 q^{65}-6722 q^{64}+4056 q^{63}+13315 q^{62}+12984 q^{61}+4645 q^{60}-7352 q^{59}-16935 q^{58}-13440 q^{57}-732 q^{56}+13505 q^{55}+17469 q^{54}+10615 q^{53}-3626 q^{52}-17819 q^{51}-17725 q^{50}-5625 q^{49}+11158 q^{48}+18491 q^{47}+14208 q^{46}+122 q^{45}-16275 q^{44}-18820 q^{43}-8490 q^{42}+8563 q^{41}+17364 q^{40}+15200 q^{39}+2366 q^{38}-14261 q^{37}-18153 q^{36}-9527 q^{35}+6713 q^{34}+15742 q^{33}+15049 q^{32}+3644 q^{31}-12374 q^{30}-17117 q^{29}-10154 q^{28}+4891 q^{27}+13936 q^{26}+14878 q^{25}+5261 q^{24}-9825 q^{23}-15773 q^{22}-11212 q^{21}+1982 q^{20}+11116 q^{19}+14463 q^{18}+7704 q^{17}-5710 q^{16}-13151 q^{15}-12089 q^{14}-2093 q^{13}+6492 q^{12}+12538 q^{11}+9884 q^{10}-314 q^9-8413 q^8-11142 q^7-5761 q^6+600 q^5+8161 q^4+9787 q^3+4352 q^2-2308 q-7344-6703 q^{-1} -4227 q^{-2} +2325 q^{-3} +6462 q^{-4} +5807 q^{-5} +2531 q^{-6} -2018 q^{-7} -4171 q^{-8} -5527 q^{-9} -2077 q^{-10} +1666 q^{-11} +3662 q^{-12} +3761 q^{-13} +1750 q^{-14} -327 q^{-15} -3399 q^{-16} -2968 q^{-17} -1441 q^{-18} +453 q^{-19} +1962 q^{-20} +2263 q^{-21} +1800 q^{-22} -615 q^{-23} -1370 q^{-24} -1650 q^{-25} -1086 q^{-26} -89 q^{-27} +887 q^{-28} +1556 q^{-29} +553 q^{-30} +130 q^{-31} -538 q^{-32} -789 q^{-33} -702 q^{-34} -161 q^{-35} +551 q^{-36} +343 q^{-37} +441 q^{-38} +137 q^{-39} -125 q^{-40} -390 q^{-41} -295 q^{-42} +42 q^{-43} -23 q^{-44} +189 q^{-45} +167 q^{-46} +113 q^{-47} -88 q^{-48} -117 q^{-49} -11 q^{-50} -97 q^{-51} +17 q^{-52} +47 q^{-53} +81 q^{-54} -5 q^{-55} -22 q^{-56} +19 q^{-57} -47 q^{-58} -12 q^{-59} - q^{-60} +29 q^{-61} -2 q^{-62} -6 q^{-63} +17 q^{-64} -12 q^{-65} -4 q^{-66} -4 q^{-67} +9 q^{-68} -2 q^{-69} -5 q^{-70} +6 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math>|J7=<math>q^{175}-2 q^{174}+q^{173}-2 q^{171}+3 q^{170}-5 q^{166}+7 q^{165}+q^{164}-10 q^{163}+5 q^{162}-q^{161}+2 q^{160}+4 q^{159}-12 q^{158}+20 q^{157}+9 q^{156}-29 q^{155}-7 q^{154}-14 q^{153}+17 q^{152}+28 q^{151}-15 q^{150}+48 q^{149}+22 q^{148}-68 q^{147}-61 q^{146}-74 q^{145}+35 q^{144}+104 q^{143}+49 q^{142}+141 q^{141}+57 q^{140}-143 q^{139}-215 q^{138}-292 q^{137}-61 q^{136}+195 q^{135}+273 q^{134}+500 q^{133}+330 q^{132}-96 q^{131}-451 q^{130}-885 q^{129}-707 q^{128}-181 q^{127}+383 q^{126}+1266 q^{125}+1442 q^{124}+961 q^{123}+68 q^{122}-1511 q^{121}-2373 q^{120}-2354 q^{119}-1383 q^{118}+1076 q^{117}+3233 q^{116}+4397 q^{115}+3942 q^{114}+725 q^{113}-3241 q^{112}-6744 q^{111}-8015 q^{110}-4617 q^{109}+1476 q^{108}+8450 q^{107}+13121 q^{106}+11128 q^{105}+3390 q^{104}-8191 q^{103}-18491 q^{102}-20064 q^{101}-11906 q^{100}+4494 q^{99}+22314 q^{98}+30320 q^{97}+24282 q^{96}+3819 q^{95}-22937 q^{94}-40285 q^{93}-39410 q^{92}-16724 q^{91}+18996 q^{90}+47661 q^{89}+55187 q^{88}+33522 q^{87}-9816 q^{86}-50940 q^{85}-69680 q^{84}-51972 q^{83}-3400 q^{82}+49104 q^{81}+80246 q^{80}+69826 q^{79}+19515 q^{78}-42627 q^{77}-86337 q^{76}-84793 q^{75}-35613 q^{74}+32873 q^{73}+87241 q^{72}+95416 q^{71}+50105 q^{70}-21616 q^{69}-84381 q^{68}-101462 q^{67}-61196 q^{66}+10937 q^{65}+79015 q^{64}+103264 q^{63}+68526 q^{62}-1962 q^{61}-72760 q^{60}-102281 q^{59}-72419 q^{58}-4479 q^{57}+66960 q^{56}+99609 q^{55}+73634 q^{54}+8684 q^{53}-62084 q^{52}-96506 q^{51}-73462 q^{50}-11224 q^{49}+58404 q^{48}+93613 q^{47}+72731 q^{46}+12971 q^{45}-55267 q^{44}-91136 q^{43}-72375 q^{42}-14914 q^{41}+52215 q^{40}+88942 q^{39}+72555 q^{38}+17753 q^{37}-48238 q^{36}-86531 q^{35}-73518 q^{34}-21949 q^{33}+42873 q^{32}+83188 q^{31}+74667 q^{30}+27708 q^{29}-35317 q^{28}-78308 q^{27}-75664 q^{26}-34580 q^{25}+25648 q^{24}+71055 q^{23}+75282 q^{22}+42067 q^{21}-13735 q^{20}-61137 q^{19}-72915 q^{18}-48897 q^{17}+643 q^{16}+48358 q^{15}+67315 q^{14}+53817 q^{13}+12779 q^{12}-33236 q^{11}-58352 q^{10}-55529 q^9-24607 q^8+17074 q^7+45832 q^6+52896 q^5+33399 q^4-1297 q^3-30988 q^2-45964 q-37551-11803 q^{-1} +15346 q^{-2} +35094 q^{-3} +36579 q^{-4} +20798 q^{-5} -1114 q^{-6} -22168 q^{-7} -30864 q^{-8} -24481 q^{-9} -9743 q^{-10} +9269 q^{-11} +21827 q^{-12} +23047 q^{-13} +15925 q^{-14} +1457 q^{-15} -11642 q^{-16} -17786 q^{-17} -17243 q^{-18} -8367 q^{-19} +2584 q^{-20} +10517 q^{-21} +14538 q^{-22} +11148 q^{-23} +3887 q^{-24} -3499 q^{-25} -9759 q^{-26} -10308 q^{-27} -6853 q^{-28} -1743 q^{-29} +4433 q^{-30} +7300 q^{-31} +7062 q^{-32} +4526 q^{-33} -395 q^{-34} -3756 q^{-35} -5216 q^{-36} -4960 q^{-37} -2026 q^{-38} +744 q^{-39} +2890 q^{-40} +3994 q^{-41} +2657 q^{-42} +987 q^{-43} -812 q^{-44} -2414 q^{-45} -2246 q^{-46} -1595 q^{-47} -431 q^{-48} +1025 q^{-49} +1360 q^{-50} +1422 q^{-51} +927 q^{-52} -154 q^{-53} -565 q^{-54} -900 q^{-55} -859 q^{-56} -264 q^{-57} +8 q^{-58} +441 q^{-59} +634 q^{-60} +303 q^{-61} +174 q^{-62} -105 q^{-63} -308 q^{-64} -217 q^{-65} -262 q^{-66} -55 q^{-67} +173 q^{-68} +117 q^{-69} +155 q^{-70} +75 q^{-71} -23 q^{-72} -9 q^{-73} -128 q^{-74} -94 q^{-75} +15 q^{-76} +6 q^{-77} +49 q^{-78} +32 q^{-79} +10 q^{-80} +41 q^{-81} -27 q^{-82} -42 q^{-83} -4 q^{-84} -9 q^{-85} +12 q^{-86} +3 q^{-87} -4 q^{-88} +22 q^{-89} -10 q^{-91} -2 q^{-92} -4 q^{-93} +5 q^{-94} -6 q^{-96} +5 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math>}}
coloured_jones_4 = <math>q^{64}-2 q^{63}+q^{62}-2 q^{60}+6 q^{59}-6 q^{58}+3 q^{57}-q^{56}-8 q^{55}+19 q^{54}-12 q^{53}+4 q^{52}-6 q^{51}-24 q^{50}+46 q^{49}-8 q^{48}+14 q^{47}-26 q^{46}-76 q^{45}+71 q^{44}+21 q^{43}+86 q^{42}-29 q^{41}-203 q^{40}+17 q^{39}+38 q^{38}+267 q^{37}+73 q^{36}-357 q^{35}-154 q^{34}-56 q^{33}+485 q^{32}+313 q^{31}-420 q^{30}-361 q^{29}-269 q^{28}+610 q^{27}+569 q^{26}-358 q^{25}-472 q^{24}-489 q^{23}+593 q^{22}+714 q^{21}-237 q^{20}-453 q^{19}-625 q^{18}+487 q^{17}+726 q^{16}-109 q^{15}-345 q^{14}-683 q^{13}+332 q^{12}+651 q^{11}+26 q^{10}-183 q^9-682 q^8+130 q^7+504 q^6+161 q^5+24 q^4-607 q^3-80 q^2+288 q+225+220 q^{-1} -420 q^{-2} -196 q^{-3} +50 q^{-4} +160 q^{-5} +310 q^{-6} -183 q^{-7} -162 q^{-8} -93 q^{-9} +26 q^{-10} +246 q^{-11} -24 q^{-12} -50 q^{-13} -95 q^{-14} -54 q^{-15} +120 q^{-16} +13 q^{-17} +17 q^{-18} -39 q^{-19} -51 q^{-20} +40 q^{-21} + q^{-22} +20 q^{-23} -7 q^{-24} -23 q^{-25} +13 q^{-26} -4 q^{-27} +8 q^{-28} -8 q^{-30} +4 q^{-31} - q^{-32} +2 q^{-33} -2 q^{-35} + q^{-36} </math> |

coloured_jones_5 = <math>q^{95}-2 q^{94}+q^{93}-2 q^{91}+3 q^{90}+3 q^{89}-6 q^{88}+3 q^{86}-4 q^{85}+5 q^{84}+8 q^{83}-15 q^{82}-8 q^{81}+10 q^{80}+5 q^{79}+16 q^{78}+10 q^{77}-35 q^{76}-40 q^{75}+2 q^{74}+36 q^{73}+73 q^{72}+46 q^{71}-59 q^{70}-129 q^{69}-101 q^{68}+22 q^{67}+188 q^{66}+234 q^{65}+60 q^{64}-216 q^{63}-390 q^{62}-276 q^{61}+158 q^{60}+589 q^{59}+591 q^{58}+39 q^{57}-722 q^{56}-1016 q^{55}-424 q^{54}+747 q^{53}+1495 q^{52}+959 q^{51}-613 q^{50}-1886 q^{49}-1621 q^{48}+251 q^{47}+2213 q^{46}+2287 q^{45}+198 q^{44}-2294 q^{43}-2884 q^{42}-779 q^{41}+2261 q^{40}+3331 q^{39}+1296 q^{38}-2058 q^{37}-3582 q^{36}-1759 q^{35}+1789 q^{34}+3685 q^{33}+2082 q^{32}-1509 q^{31}-3638 q^{30}-2279 q^{29}+1221 q^{28}+3513 q^{27}+2403 q^{26}-985 q^{25}-3333 q^{24}-2437 q^{23}+718 q^{22}+3113 q^{21}+2480 q^{20}-466 q^{19}-2847 q^{18}-2479 q^{17}+130 q^{16}+2530 q^{15}+2490 q^{14}+205 q^{13}-2112 q^{12}-2422 q^{11}-617 q^{10}+1620 q^9+2302 q^8+971 q^7-1053 q^6-2016 q^5-1285 q^4+440 q^3+1658 q^2+1422 q+115-1142 q^{-1} -1411 q^{-2} -568 q^{-3} +622 q^{-4} +1196 q^{-5} +830 q^{-6} -109 q^{-7} -873 q^{-8} -891 q^{-9} -256 q^{-10} +468 q^{-11} +780 q^{-12} +479 q^{-13} -140 q^{-14} -549 q^{-15} -498 q^{-16} -128 q^{-17} +297 q^{-18} +437 q^{-19} +217 q^{-20} -88 q^{-21} -268 q^{-22} -246 q^{-23} -42 q^{-24} +149 q^{-25} +173 q^{-26} +88 q^{-27} -33 q^{-28} -113 q^{-29} -86 q^{-30} -4 q^{-31} +42 q^{-32} +60 q^{-33} +30 q^{-34} -21 q^{-35} -31 q^{-36} -14 q^{-37} -7 q^{-38} +14 q^{-39} +18 q^{-40} -2 q^{-41} -7 q^{-42} + q^{-43} -6 q^{-44} +7 q^{-46} - q^{-47} -4 q^{-48} +2 q^{-49} - q^{-51} +2 q^{-52} -2 q^{-54} + q^{-55} </math> |
{{Computer Talk Header}}
coloured_jones_6 = <math>q^{132}-2 q^{131}+q^{130}-2 q^{128}+3 q^{127}+3 q^{125}-9 q^{124}+4 q^{123}+6 q^{122}-9 q^{121}+5 q^{120}-q^{119}+5 q^{118}-21 q^{117}+12 q^{116}+28 q^{115}-18 q^{114}-q^{113}-12 q^{112}-5 q^{111}-46 q^{110}+36 q^{109}+95 q^{108}-6 q^{107}-11 q^{106}-55 q^{105}-70 q^{104}-136 q^{103}+54 q^{102}+250 q^{101}+115 q^{100}+78 q^{99}-78 q^{98}-250 q^{97}-460 q^{96}-138 q^{95}+373 q^{94}+420 q^{93}+565 q^{92}+307 q^{91}-282 q^{90}-1115 q^{89}-1030 q^{88}-207 q^{87}+420 q^{86}+1540 q^{85}+1830 q^{84}+901 q^{83}-1303 q^{82}-2658 q^{81}-2479 q^{80}-1387 q^{79}+1819 q^{78}+4390 q^{77}+4475 q^{76}+865 q^{75}-3407 q^{74}-6065 q^{73}-6164 q^{72}-770 q^{71}+5905 q^{70}+9619 q^{69}+6318 q^{68}-980 q^{67}-8423 q^{66}-12462 q^{65}-6722 q^{64}+4056 q^{63}+13315 q^{62}+12984 q^{61}+4645 q^{60}-7352 q^{59}-16935 q^{58}-13440 q^{57}-732 q^{56}+13505 q^{55}+17469 q^{54}+10615 q^{53}-3626 q^{52}-17819 q^{51}-17725 q^{50}-5625 q^{49}+11158 q^{48}+18491 q^{47}+14208 q^{46}+122 q^{45}-16275 q^{44}-18820 q^{43}-8490 q^{42}+8563 q^{41}+17364 q^{40}+15200 q^{39}+2366 q^{38}-14261 q^{37}-18153 q^{36}-9527 q^{35}+6713 q^{34}+15742 q^{33}+15049 q^{32}+3644 q^{31}-12374 q^{30}-17117 q^{29}-10154 q^{28}+4891 q^{27}+13936 q^{26}+14878 q^{25}+5261 q^{24}-9825 q^{23}-15773 q^{22}-11212 q^{21}+1982 q^{20}+11116 q^{19}+14463 q^{18}+7704 q^{17}-5710 q^{16}-13151 q^{15}-12089 q^{14}-2093 q^{13}+6492 q^{12}+12538 q^{11}+9884 q^{10}-314 q^9-8413 q^8-11142 q^7-5761 q^6+600 q^5+8161 q^4+9787 q^3+4352 q^2-2308 q-7344-6703 q^{-1} -4227 q^{-2} +2325 q^{-3} +6462 q^{-4} +5807 q^{-5} +2531 q^{-6} -2018 q^{-7} -4171 q^{-8} -5527 q^{-9} -2077 q^{-10} +1666 q^{-11} +3662 q^{-12} +3761 q^{-13} +1750 q^{-14} -327 q^{-15} -3399 q^{-16} -2968 q^{-17} -1441 q^{-18} +453 q^{-19} +1962 q^{-20} +2263 q^{-21} +1800 q^{-22} -615 q^{-23} -1370 q^{-24} -1650 q^{-25} -1086 q^{-26} -89 q^{-27} +887 q^{-28} +1556 q^{-29} +553 q^{-30} +130 q^{-31} -538 q^{-32} -789 q^{-33} -702 q^{-34} -161 q^{-35} +551 q^{-36} +343 q^{-37} +441 q^{-38} +137 q^{-39} -125 q^{-40} -390 q^{-41} -295 q^{-42} +42 q^{-43} -23 q^{-44} +189 q^{-45} +167 q^{-46} +113 q^{-47} -88 q^{-48} -117 q^{-49} -11 q^{-50} -97 q^{-51} +17 q^{-52} +47 q^{-53} +81 q^{-54} -5 q^{-55} -22 q^{-56} +19 q^{-57} -47 q^{-58} -12 q^{-59} - q^{-60} +29 q^{-61} -2 q^{-62} -6 q^{-63} +17 q^{-64} -12 q^{-65} -4 q^{-66} -4 q^{-67} +9 q^{-68} -2 q^{-69} -5 q^{-70} +6 q^{-71} -2 q^{-72} - q^{-74} +2 q^{-75} -2 q^{-77} + q^{-78} </math> |

coloured_jones_7 = <math>q^{175}-2 q^{174}+q^{173}-2 q^{171}+3 q^{170}-5 q^{166}+7 q^{165}+q^{164}-10 q^{163}+5 q^{162}-q^{161}+2 q^{160}+4 q^{159}-12 q^{158}+20 q^{157}+9 q^{156}-29 q^{155}-7 q^{154}-14 q^{153}+17 q^{152}+28 q^{151}-15 q^{150}+48 q^{149}+22 q^{148}-68 q^{147}-61 q^{146}-74 q^{145}+35 q^{144}+104 q^{143}+49 q^{142}+141 q^{141}+57 q^{140}-143 q^{139}-215 q^{138}-292 q^{137}-61 q^{136}+195 q^{135}+273 q^{134}+500 q^{133}+330 q^{132}-96 q^{131}-451 q^{130}-885 q^{129}-707 q^{128}-181 q^{127}+383 q^{126}+1266 q^{125}+1442 q^{124}+961 q^{123}+68 q^{122}-1511 q^{121}-2373 q^{120}-2354 q^{119}-1383 q^{118}+1076 q^{117}+3233 q^{116}+4397 q^{115}+3942 q^{114}+725 q^{113}-3241 q^{112}-6744 q^{111}-8015 q^{110}-4617 q^{109}+1476 q^{108}+8450 q^{107}+13121 q^{106}+11128 q^{105}+3390 q^{104}-8191 q^{103}-18491 q^{102}-20064 q^{101}-11906 q^{100}+4494 q^{99}+22314 q^{98}+30320 q^{97}+24282 q^{96}+3819 q^{95}-22937 q^{94}-40285 q^{93}-39410 q^{92}-16724 q^{91}+18996 q^{90}+47661 q^{89}+55187 q^{88}+33522 q^{87}-9816 q^{86}-50940 q^{85}-69680 q^{84}-51972 q^{83}-3400 q^{82}+49104 q^{81}+80246 q^{80}+69826 q^{79}+19515 q^{78}-42627 q^{77}-86337 q^{76}-84793 q^{75}-35613 q^{74}+32873 q^{73}+87241 q^{72}+95416 q^{71}+50105 q^{70}-21616 q^{69}-84381 q^{68}-101462 q^{67}-61196 q^{66}+10937 q^{65}+79015 q^{64}+103264 q^{63}+68526 q^{62}-1962 q^{61}-72760 q^{60}-102281 q^{59}-72419 q^{58}-4479 q^{57}+66960 q^{56}+99609 q^{55}+73634 q^{54}+8684 q^{53}-62084 q^{52}-96506 q^{51}-73462 q^{50}-11224 q^{49}+58404 q^{48}+93613 q^{47}+72731 q^{46}+12971 q^{45}-55267 q^{44}-91136 q^{43}-72375 q^{42}-14914 q^{41}+52215 q^{40}+88942 q^{39}+72555 q^{38}+17753 q^{37}-48238 q^{36}-86531 q^{35}-73518 q^{34}-21949 q^{33}+42873 q^{32}+83188 q^{31}+74667 q^{30}+27708 q^{29}-35317 q^{28}-78308 q^{27}-75664 q^{26}-34580 q^{25}+25648 q^{24}+71055 q^{23}+75282 q^{22}+42067 q^{21}-13735 q^{20}-61137 q^{19}-72915 q^{18}-48897 q^{17}+643 q^{16}+48358 q^{15}+67315 q^{14}+53817 q^{13}+12779 q^{12}-33236 q^{11}-58352 q^{10}-55529 q^9-24607 q^8+17074 q^7+45832 q^6+52896 q^5+33399 q^4-1297 q^3-30988 q^2-45964 q-37551-11803 q^{-1} +15346 q^{-2} +35094 q^{-3} +36579 q^{-4} +20798 q^{-5} -1114 q^{-6} -22168 q^{-7} -30864 q^{-8} -24481 q^{-9} -9743 q^{-10} +9269 q^{-11} +21827 q^{-12} +23047 q^{-13} +15925 q^{-14} +1457 q^{-15} -11642 q^{-16} -17786 q^{-17} -17243 q^{-18} -8367 q^{-19} +2584 q^{-20} +10517 q^{-21} +14538 q^{-22} +11148 q^{-23} +3887 q^{-24} -3499 q^{-25} -9759 q^{-26} -10308 q^{-27} -6853 q^{-28} -1743 q^{-29} +4433 q^{-30} +7300 q^{-31} +7062 q^{-32} +4526 q^{-33} -395 q^{-34} -3756 q^{-35} -5216 q^{-36} -4960 q^{-37} -2026 q^{-38} +744 q^{-39} +2890 q^{-40} +3994 q^{-41} +2657 q^{-42} +987 q^{-43} -812 q^{-44} -2414 q^{-45} -2246 q^{-46} -1595 q^{-47} -431 q^{-48} +1025 q^{-49} +1360 q^{-50} +1422 q^{-51} +927 q^{-52} -154 q^{-53} -565 q^{-54} -900 q^{-55} -859 q^{-56} -264 q^{-57} +8 q^{-58} +441 q^{-59} +634 q^{-60} +303 q^{-61} +174 q^{-62} -105 q^{-63} -308 q^{-64} -217 q^{-65} -262 q^{-66} -55 q^{-67} +173 q^{-68} +117 q^{-69} +155 q^{-70} +75 q^{-71} -23 q^{-72} -9 q^{-73} -128 q^{-74} -94 q^{-75} +15 q^{-76} +6 q^{-77} +49 q^{-78} +32 q^{-79} +10 q^{-80} +41 q^{-81} -27 q^{-82} -42 q^{-83} -4 q^{-84} -9 q^{-85} +12 q^{-86} +3 q^{-87} -4 q^{-88} +22 q^{-89} -10 q^{-91} -2 q^{-92} -4 q^{-93} +5 q^{-94} -6 q^{-96} +5 q^{-97} +2 q^{-98} -2 q^{-99} - q^{-101} +2 q^{-102} -2 q^{-104} + q^{-105} </math> |
<table>
computer_talk =
<tr valign=top>
<table>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
</tr>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>

<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 64]]</nowiki></pre></td></tr>
</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11],
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 64]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[8, 2, 9, 1], X[10, 4, 11, 3], X[2, 10, 3, 9], X[18, 12, 19, 11],
X[14, 5, 15, 6], X[4, 17, 5, 18], X[16, 7, 17, 8], X[6, 15, 7, 16],
X[14, 5, 15, 6], X[4, 17, 5, 18], X[16, 7, 17, 8], X[6, 15, 7, 16],
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></pre></td></tr>
X[20, 14, 1, 13], X[12, 20, 13, 19]]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 64]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -3, 2, -6, 5, -8, 7, -1, 3, -2, 4, -10, 9, -5, 8, -7, 6,
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 64]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -3, 2, -6, 5, -8, 7, -1, 3, -2, 4, -10, 9, -5, 8, -7, 6,
-4, 10, -9]</nowiki></pre></td></tr>
-4, 10, -9]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 64]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[8, 10, 14, 16, 2, 18, 20, 6, 4, 12]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 64]]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 64]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, 1, -2, -2, -2}]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[8, 10, 14, 16, 2, 18, 20, 6, 4, 12]</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, 10}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 64]]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 64]]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 64]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_64_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, -2, 1, 1, 1, -2, -2, -2}]</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 64]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 64]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -4 3 6 10 2 3 4
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 64]]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 64]]]</nowiki></code></td></tr>
<tr align=left><td></td><td>[[Image:10_64_ML.gif]]</td></tr><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 64]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 64]][t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 6 10 2 3 4
-11 - t + -- - -- + -- + 10 t - 6 t + 3 t - t
-11 - t + -- - -- + -- + 10 t - 6 t + 3 t - t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 64]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td>
1 - 3 z - 8 z - 5 z - z</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 64]][z]</nowiki></code></td></tr>
<tr align=left>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 64]}</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8
1 - 3 z - 8 z - 5 z - z</nowiki></code></td></tr>

</table>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 64]], KnotSignature[Knot[10, 64]]}</nowiki></pre></td></tr>
<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{51, 2}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 64]][q]</nowiki></pre></td></tr>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr>
<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 2 4 2 3 4 5 6 7
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 64]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 64]], KnotSignature[Knot[10, 64]]}</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{51, 2}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 64]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 2 4 2 3 4 5 6 7
-6 + q - -- + - + 8 q - 8 q + 8 q - 7 q + 4 q - 2 q + q
-6 + q - -- + - + 8 q - 8 q + 8 q - 7 q + 4 q - 2 q + q
2 q
2 q
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 64]}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 64]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 2 2 4 6 8 12 14 16 20
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 64]}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 64]][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 2 2 4 6 8 12 14 16 20
q + -- + q - 2 q + 2 q - 2 q - q - q + 2 q + q
q + -- + q - 2 q + 2 q - 2 q - q - q + 2 q + q
4
4
q</nowiki></pre></td></tr>
q</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 64]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 4 4 6
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 64]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6
3 6 2 8 z 19 z 4 5 z 18 z 6 z
3 6 2 8 z 19 z 4 5 z 18 z 6 z
4 + -- - -- + 8 z + ---- - ----- + 5 z + ---- - ----- + z + -- -
4 + -- - -- + 8 z + ---- - ----- + 5 z + ---- - ----- + z + -- -
Line 156: Line 193:
---- - --
---- - --
2 2
2 2
a a</nowiki></pre></td></tr>
a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 64]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 64]][a, z]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2
3 6 4 z 6 z 3 z 2 2 z 3 z 8 z
3 6 4 z 6 z 3 z 2 2 z 3 z 8 z
4 + -- + -- - --- - --- - --- - a z - 9 z - ---- + ---- - ---- -
4 + -- + -- - --- - --- - --- - a z - 9 z - ---- + ---- - ---- -
Line 187: Line 228:
2 z + ---- + ---- + -- + --
2 z + ---- + ---- + -- + --
4 2 3 a
4 2 3 a
a a a</nowiki></pre></td></tr>
a a a</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 64]], Vassiliev[3][Knot[10, 64]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{-3, -3}</nowiki></pre></td></tr>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 64]], Vassiliev[3][Knot[10, 64]]}</nowiki></code></td></tr>

<tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 64]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 1 1 3 1 3 3 q
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-3, -3}</nowiki></code></td></tr>
</table>
<table><tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 64]][q, t]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 1 1 3 1 3 3 q
5 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
5 q + 4 q + ----- + ----- + ----- + ----- + ---- + --- + --- +
7 4 5 3 3 3 3 2 2 q t t
7 4 5 3 3 3 3 2 2 q t t
Line 202: Line 251:
11 4 11 5 13 5 15 6
11 4 11 5 13 5 15 6
3 q t + q t + q t + q t</nowiki></pre></td></tr>
3 q t + q t + q t + q t</nowiki></code></td></tr>
</table>

<table><tr align=left>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 64], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -10 2 6 7 4 18 13 16 35 2
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td>
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 64], 2][q]</nowiki></code></td></tr>
<tr align=left>
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td>
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 2 6 7 4 18 13 16 35 2
-13 + q - -- + -- - -- - -- + -- - -- - -- + -- - 33 q + 48 q -
-13 + q - -- + -- - -- - -- + -- - -- - -- + -- - 33 q + 48 q -
9 7 6 5 4 3 2 q
9 7 6 5 4 3 2 q
Line 217: Line 270:
19 20
19 20
2 q + q</nowiki></pre></td></tr>
2 q + q</nowiki></code></td></tr>
</table> }}

</table>

{| width=100%
|align=left|See/edit the [[Rolfsen_Splice_Template]].

Back to the [[#top|top]].
|align=right|{{Knot Navigation Links|ext=gif}}
|}

[[Category:Knot Page]]

Latest revision as of 17:06, 1 September 2005

10 63.gif

10_63

10 65.gif

10_65

10 64.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 64's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 64 at Knotilus!


Knot presentations

Planar diagram presentation X8291 X10,4,11,3 X2,10,3,9 X18,12,19,11 X14,5,15,6 X4,17,5,18 X16,7,17,8 X6,15,7,16 X20,14,1,13 X12,20,13,19
Gauss code 1, -3, 2, -6, 5, -8, 7, -1, 3, -2, 4, -10, 9, -5, 8, -7, 6, -4, 10, -9
Dowker-Thistlethwaite code 8 10 14 16 2 18 20 6 4 12
Conway Notation [31,3,3]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 10, width is 3,

Braid index is 3

10 64 ML.gif 10 64 AP.gif
[{2, 12}, {1, 11}, {12, 10}, {11, 5}, {9, 4}, {10, 6}, {5, 3}, {4, 2}, {3, 7}, {6, 8}, {7, 9}, {8, 1}]

[edit Notes on presentations of 10 64]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-3][-9]
Hyperbolic Volume 10.8681
A-Polynomial See Data:10 64/A-polynomial

[edit Notes for 10 64's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for 10 64's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 51, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-3, -3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 64. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-10123456χ
15          11
13         1 -1
11        31 2
9       41  -3
7      43   1
5     44    0
3    44     0
1   35      2
-1  13       -2
-3 13        2
-5 1         -1
-71          1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials