L8n4: Difference between revisions
From Knot Atlas
				
				
				Jump to navigationJump to search
				
				| No edit summary | DrorsRobot (talk | contribs)  No edit summary | ||
| (4 intermediate revisions by 3 users not shown) | |||
| Line 1: | Line 1: | ||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!--  --> | |||
| <!-- This | <!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit! | ||
| <!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) | |||
| <!--  --> | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. --> | |||
| <!-- --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| <!-- provide an anchor so we can return to the top of the page --> | |||
| <!-- <math>\text{Null}</math> --> | |||
| <span id="top"></span> | |||
| <!--                       WARNING! WARNING! WARNING! | |||
| <!-- --> | |||
| <!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit! | |||
| <!-- this relies on transclusion for next and previous links --> | |||
| <!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page. | |||
| {{Knot Navigation Links|ext=gif}} | |||
| <!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately. | |||
| <!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. --> | |||
| ⚫ | |||
| <!-- <math>\text{Null}</math> --> | |||
| {{Link Page| | |||
| <br style="clear:both" /> | |||
| n = 8 | | |||
| t = n | | |||
| {{:{{PAGENAME}} Further Notes and Views}} | |||
| k = 4 | | |||
| ⚫ | |||
| {{Link Presentations}} | |||
| braid_table     = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> | |||
| {{Link Polynomial Invariants}} | |||
| <tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> | |||
| {{Vassiliev Invariants}} | |||
| <tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> | |||
| <tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> | |||
| {{Khovanov Homology|table=<table border=1> | |||
| ⚫ | |||
| khovanov_table  = <table border=1> | |||
| <tr align=center> | <tr align=center> | ||
| <td width=18.1818%><table cellpadding=0 cellspacing=0> | <td width=18.1818%><table cellpadding=0 cellspacing=0> | ||
|   <tr><td>\</td><td> </td><td>r</td></tr> | |||
| <tr><td> </td><td> \ </td><td> </td></tr> | <tr><td> </td><td> \ </td><td> </td></tr> | ||
| <tr><td>j</td><td> </td><td>\</td></tr> | <tr><td>j</td><td> </td><td>\</td></tr> | ||
| </table></td> | </table></td> | ||
|   <td width=9.09091%>-6</td    ><td width=9.09091%>-5</td    ><td width=9.09091%>-4</td    ><td width=9.09091%>-3</td    ><td width=9.09091%>-2</td    ><td width=9.09091%>-1</td    ><td width=9.09091%>0</td    ><td width=18.1818%>χ</td></tr> | |||
| <tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> | <tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td>2</td></tr> | ||
| <tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>1</td></tr> | <tr align=center><td>-3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>2</td><td>1</td></tr> | ||
| Line 35: | Line 37: | ||
| <tr align=center><td>-13</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | <tr align=center><td>-13</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> | ||
| <tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | <tr align=center><td>-15</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> | ||
| </table> | </table> | | ||
| computer_talk = | |||
|          <table> | |||
| {{Computer Talk Header}} | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
|          </tr> | |||
| ⚫ | |||
|          <tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> | |||
| ⚫ | |||
| ⚫ | |||
| </tr> | |||
| <tr valign=top><td | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>8</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Length[Skeleton[Link[8, NonAlternating, 4]]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[8, NonAlternating, 4]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[5, 12, 6, 13], X[3, 8, 4, 9], X[2, 14, 3, 13],  | ||
|   X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[15, 1, 16, 4]]</nowiki></pre></td></tr> |   X[14, 7, 15, 8], X[9, 16, 10, 11], X[11, 10, 12, 5], X[15, 1, 16, 4]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[8, NonAlternating, 4]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -4, -3, 8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, 4, -5, -8, 6}]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[8, NonAlternating, 4]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {-1, 2, -1, -2, 1, -2, -2, -2}]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: |          <tr  valign=top><td><pre style="color: blue; border: 0px; padding:  0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red;  border: 0px; padding:  0em"><nowiki>Show[DrawMorseLink[Link[8, NonAlternating, 4]]]</nowiki></pre></td></tr><tr><td></td><td  align=left>[[Image:L8n4_ML.gif]]</td></tr><tr valign=top><td><tt><font  color=blue>Out[7]=</font></tt><td><tt><font  color=black>-Graphics-</font></tt></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[8, NonAlternating, 4]]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>-2</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[8, NonAlternating, 4]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color: | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7    -6   2    2    3     -2   2 | ||
| ⚫ | |||
| ⚫ | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -2}</nowiki></pre></td></tr> | |||
| ⚫ | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7    -6   2    2    3     -2   2 | |||
| q   - q   + -- - -- + -- - q   + - | q   - q   + -- - -- + -- - q   + - | ||
|              5    4    3         q |              5    4    3         q | ||
|             q    q    q</nowiki></pre></td></tr> |             q    q    q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[8, NonAlternating, 4]][q]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22    -20    2     3     2     3     3    4    4    2    2 | ||
| <math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[8, NonAlternating, 4]][q]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22    -20    2     3     2     3     3    4    4    2    2 | |||
| q    + q    + --- + --- + --- + --- + --- + -- + -- + -- + -- | q    + q    + --- + --- + --- + --- + --- + -- + -- + -- + -- | ||
|                18    16    14    12    10    8    6    4    2 |                18    16    14    12    10    8    6    4    2 | ||
|               q     q     q     q     q     q    q    q    q</nowiki></pre></td></tr> |               q     q     q     q     q     q    q    q    q</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[8, NonAlternating, 4]][a, z]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>                      2      4    6 | ||
|    2      4      6   a    2 a    a       2  2      4  2    6  2    4  4 | |||
| 4 a  - 6 a  + 2 a  + -- - ---- + -- + 2 a  z  - 4 a  z  + a  z  - a  z | |||
|                       2     2     2 | |||
| ⚫ | |||
| ⚫ | |||
| ⚫ | |||
|     2      4      6    8   a    2 a    a    2 a    2 a       3 |     2      4      6    8   a    2 a    a    2 a    2 a       3 | ||
| -5 a  - 8 a  - 3 a  + a  + -- + ---- + -- - ---- - ---- + 6 a  z +  | -5 a  - 8 a  - 3 a  + a  + -- + ---- + -- - ---- - ---- + 6 a  z +  | ||
| Line 91: | Line 91: | ||
|    4  6    6  6 |    4  6    6  6 | ||
|   a  z  + a  z</nowiki></pre></td></tr> |   a  z  + a  z</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[ |          <tr valign=top><td><pre style="color:    blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[8, NonAlternating, 4]][q, t]</nowiki></pre></td></tr> | ||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ | <tr valign=top><td><pre   style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2    2     1        1        1        1        1       1       1 | ||
| {0, --} | |||
| ⚫ | |||
| <tr valign=top><td><pre style="color:  blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[8, NonAlternating, 4]][q, t]</nowiki></pre></td></tr> | |||
| <tr valign=top><td><pre  style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=  </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2    2     1        1        1        1        1       1       1 | |||
| -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +  | -- + - + ------ + ------ + ------ + ------ + ----- + ----- + ----- +  | ||
|  3   q    15  6    13  6    13  5    11  4    9  4    9  3    7  3 |  3   q    15  6    13  6    13  5    11  4    9  4    9  3    7  3 | ||
| Line 105: | Line 101: | ||
|    7  2    5  2    3 |    7  2    5  2    3 | ||
|   q  t    q  t    q  t</nowiki></pre></td></tr> |   q  t    q  t    q  t</nowiki></pre></td></tr> | ||
| </table> |          </table> }} | ||
|  [[Category:Knot Page]] | |||
Latest revision as of 03:15, 3 September 2005
|  |  | 
|  (Knotscape image) | See the full Thistlethwaite Link Table (up to 11 crossings). | 
| L8n4 is in the Rolfsen table of links. | 
Link Presentations
[edit Notes on L8n4's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X3849 X2,14,3,13 X14,7,15,8 X9,16,10,11 X11,10,12,5 X15,1,16,4 | 
| Gauss code | {1, -4, -3, 8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, 4, -5, -8, 6} | 
| A Braid Representative | 
 | |||
| A Morse Link Presentation |   | 
Polynomial invariants
| Multivariable Alexander Polynomial (in , , , ...) | (db) | 
| Jones polynomial | (db) | 
| Signature | -2 (db) | 
| HOMFLY-PT polynomial | (db) | 
| Kauffman polynomial | (db) | 
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). | 
 | 
| Integral Khovanov Homology (db, data source) |  | 
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. | 
 | 







