L8n3
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8n3 is [math]\displaystyle{ 8^3_{7} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8n3's Link Presentations]
| Planar diagram presentation | X6172 X5,12,6,13 X3849 X13,2,14,3 X14,7,15,8 X9,16,10,11 X11,10,12,5 X4,15,1,16 |
| Gauss code | {1, 4, -3, -8}, {-2, -1, 5, 3, -6, 7}, {-7, 2, -4, -5, 8, 6} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^2 w^2-1}{\sqrt{u} v w} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ q^{-3} + q^{-5} + q^{-7} + q^{-9} }[/math] (db) |
| Signature | -6 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{10} z^{-2} +a^{10}-z^4 a^8-5 z^2 a^8-2 a^8 z^{-2} -6 a^8+z^6 a^6+6 z^4 a^6+10 z^2 a^6+a^6 z^{-2} +5 a^6 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{12}+a^{10} z^2+a^{10} z^{-2} -3 a^{10}+a^9 z^5-5 a^9 z^3+6 a^9 z-2 a^9 z^{-1} +a^8 z^6-6 a^8 z^4+11 a^8 z^2+2 a^8 z^{-2} -8 a^8+a^7 z^5-5 a^7 z^3+6 a^7 z-2 a^7 z^{-1} +a^6 z^6-6 a^6 z^4+10 a^6 z^2+a^6 z^{-2} -5 a^6 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



