L8n2
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8n2 is [math]\displaystyle{ 8^2_{15} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8n2's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X15,1,16,4 X9,12,10,13 X3849 X5,11,6,10 X11,5,12,16 X2,14,3,13 |
| Gauss code | {1, -8, -5, 3}, {-6, -1, 2, 5, -4, 6, -7, 4, 8, -2, -3, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1)}{\sqrt{u} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -q^{5/2}+q^{3/2}-2 \sqrt{q}+\frac{1}{\sqrt{q}}-\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}-\frac{1}{q^{7/2}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z a^3+a^3 z^{-1} -z^3 a-3 z a-2 a z^{-1} +2 z a^{-1} +2 a^{-1} z^{-1} - a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -a^2 z^6-z^6-a^3 z^5-2 a z^5-z^5 a^{-1} +4 a^2 z^4+4 z^4+4 a^3 z^3+8 a z^3+4 z^3 a^{-1} -3 a^2 z^2-z^2 a^{-2} -4 z^2-3 a^3 z-8 a z-6 z a^{-1} -z a^{-3} +1+a^3 z^{-1} +2 a z^{-1} +2 a^{-1} z^{-1} + a^{-3} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



