L8n1
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8n1 is [math]\displaystyle{ 8^2_{16} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8n1's Link Presentations]
| Planar diagram presentation | X6172 X14,7,15,8 X4,15,1,16 X9,12,10,13 X3849 X5,11,6,10 X11,5,12,16 X13,2,14,3 |
| Gauss code | {1, 8, -5, -3}, {-6, -1, 2, 5, -4, 6, -7, 4, -8, -2, 3, 7} |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{u v^3-2 u v^2-2 v+1}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{2}{q^{9/2}}-\frac{2}{q^{7/2}}+\frac{2}{q^{5/2}}-\frac{2}{q^{3/2}}-\frac{2}{q^{11/2}}-\sqrt{q}+\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^7 z^{-1} -a^5 z^3-3 a^5 z-2 a^5 z^{-1} +a^3 z^5+4 a^3 z^3+4 a^3 z+2 a^3 z^{-1} -a z^3-3 a z-a z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ 3 a^7 z-a^7 z^{-1} +a^6 z^4+2 a^5 z^5-6 a^5 z^3+7 a^5 z-2 a^5 z^{-1} +a^4 z^6-2 a^4 z^4+a^4 z^2-a^4+3 a^3 z^5-10 a^3 z^3+8 a^3 z-2 a^3 z^{-1} +a^2 z^6-3 a^2 z^4+a^2 z^2+a z^5-4 a z^3+4 a z-a z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



