L8a21
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L8a21 is a closed four-link chain. It is [math]\displaystyle{ 8^4_{1} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L8a21's Link Presentations]
| Planar diagram presentation | X6172 X2536 X16,11,13,12 X10,3,11,4 X4,9,1,10 X14,7,15,8 X8,13,5,14 X12,15,9,16 |
| Gauss code | {1, -2, 4, -5}, {2, -1, 6, -7}, {5, -4, 3, -8}, {7, -6, 8, -3} |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{t(2) t(1)-t(2) t(3) t(1)+t(3) t(1)-t(2) t(4) t(1)-t(3) t(4) t(1)+2 t(4) t(1)-t(1)-t(2)+2 t(2) t(3)-t(3)+t(2) t(4)-t(2) t(3) t(4)+t(3) t(4)-t(4)}{\sqrt{t(1)} \sqrt{t(2)} \sqrt{t(3)} \sqrt{t(4)}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ \frac{4}{q^{9/2}}-\frac{6}{q^{7/2}}+\frac{3}{q^{5/2}}-\frac{1}{q^{3/2}}-\frac{1}{q^{19/2}}+\frac{1}{q^{17/2}}-\frac{5}{q^{15/2}}+\frac{4}{q^{13/2}}-\frac{7}{q^{11/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ a^{11} z^{-3} -3 a^9 z^{-3} -4 a^9 z^{-1} +3 a^7 z^{-3} +6 a^7 z+8 a^7 z^{-1} -3 a^5 z^3-a^5 z^{-3} -6 a^5 z-4 a^5 z^{-1} -a^3 z^3 }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^5 a^{11}+4 z^3 a^{11}-6 z a^{11}+4 a^{11} z^{-1} -a^{11} z^{-3} -z^6 a^{10}+6 z^2 a^{10}+3 a^{10} z^{-2} -8 a^{10}-z^7 a^9-2 z^5 a^9+11 z^3 a^9-14 z a^9+9 a^9 z^{-1} -3 a^9 z^{-3} -5 z^6 a^8+5 z^4 a^8+12 z^2 a^8+6 a^8 z^{-2} -15 a^8-z^7 a^7-7 z^5 a^7+17 z^3 a^7-14 z a^7+9 a^7 z^{-1} -3 a^7 z^{-3} -4 z^6 a^6+2 z^4 a^6+6 z^2 a^6+3 a^6 z^{-2} -8 a^6-6 z^5 a^5+9 z^3 a^5-6 z a^5+4 a^5 z^{-1} -a^5 z^{-3} -3 z^4 a^4-z^3 a^3 }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|






