K11a18: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- -->
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite_Splice_Base]]. Please do not edit!
<!-- -->
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite_Splice_Base]]. -->
<!-- -->
<!-- <math>\text{Null}</math> -->
<!-- provide an anchor so we can return to the top of the page -->
<!-- <math>\text{Null}</math> -->
<span id="top"></span>
<!-- WARNING! WARNING! WARNING!
<!-- -->
<!-- This page was generated from the splice template [[Hoste-Thistlethwaite Splice Template]]. Please do not edit!
<!-- this relies on transclusion for next and previous links -->
<!-- Almost certainly, you want to edit [[Template:Hoste-Thistlethwaite Knot Page]], which actually produces this page.
{{Knot Navigation Links|ext=gif}}
<!-- The text below simply calls [[Template:Hoste-Thistlethwaite Knot Page]] setting the values of all the parameters appropriately.
{{Hoste-Thistlethwaite Knot Page Header|n=11|t=a|k=18|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-6,4,-2,5,-9,6,-3,7,-11,8,-5,9,-8,10,-7,11,-10/goTop.html}}
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Hoste-Thistlethwaite Splice Template]]. -->

<!-- <math>\text{Null}</math> -->
<br style="clear:both" />
{{Hoste-Thistlethwaite Knot Page|

n = 11 |
{{:{{PAGENAME}} Further Notes and Views}}
t = a |

k = 18 |
{{Knot Presentations}}
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,2,-1,3,-6,4,-2,5,-9,6,-3,7,-11,8,-5,9,-8,10,-7,11,-10/goTop.html |
{{3D Invariants}}
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">
{{4D Invariants}}
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
{{Polynomial Invariants}}
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]]</td></tr>
{{Vassiliev Invariants}}
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]]</td></tr>

<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr>
{{Khovanov Homology|table=<table border=1>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
</table> |
same_alexander = |
same_jones = |
khovanov_table = <table border=1>
<tr align=center>
<tr align=center>
<td width=12.5%><table cellpadding=0 cellspacing=0>
<td width=12.5%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=6.25%>-3</td ><td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=6.25%>7</td ><td width=6.25%>8</td ><td width=12.5%>&chi;</td></tr>
<td width=6.25%>-3</td ><td width=6.25%>-2</td ><td width=6.25%>-1</td ><td width=6.25%>0</td ><td width=6.25%>1</td ><td width=6.25%>2</td ><td width=6.25%>3</td ><td width=6.25%>4</td ><td width=6.25%>5</td ><td width=6.25%>6</td ><td width=6.25%>7</td ><td width=6.25%>8</td ><td width=12.5%>&chi;</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>19</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>-3</td></tr>
<tr align=center><td>17</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>3</td><td bgcolor=yellow>&nbsp;</td><td>-3</td></tr>
Line 41: Line 47:
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-3</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>2</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>2</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>-5</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table>}}
</table> |
coloured_jones_2 = <math>\textrm{NotAvailable}(q)</math> |

coloured_jones_3 = <math>\textrm{NotAvailable}(q)</math> |
{{Computer Talk Header}}
coloured_jones_4 = <math>\textrm{NotAvailable}(q)</math> |

coloured_jones_5 = <math>\textrm{NotAvailable}(q)</math> |
<table>
coloured_jones_6 = <math>\textrm{NotAvailable}(q)</math> |
<tr valign=top>
coloured_jones_7 = <math>\textrm{NotAvailable}(q)</math> |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[2, 8, 3, 7],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>11</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[8, 4, 9, 3], X[12, 6, 13, 5], X[2, 8, 3, 7],
X[16, 10, 17, 9], X[6, 12, 7, 11], X[20, 13, 21, 14],
X[16, 10, 17, 9], X[6, 12, 7, 11], X[20, 13, 21, 14],
Line 61: Line 71:
X[14, 21, 15, 22]]</nowiki></pre></td></tr>
X[14, 21, 15, 22]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 2, -1, 3, -6, 4, -2, 5, -9, 6, -3, 7, -11, 8, -5, 9,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -4, 2, -1, 3, -6, 4, -2, 5, -9, 6, -3, 7, -11, 8, -5, 9,
-8, 10, -7, 11, -10]</nowiki></pre></td></tr>
-8, 10, -7, 11, -10]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Knot[11, Alternating, 18]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[6, {1, 2, 3, -4, 3, -2, -1, 3, 3, 2, 3, 3, 4, 5, -4, -4, 3, -2, -4,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 18]][t]</nowiki></pre></td></tr>
3, -5}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 13 29 2 3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[11, Alternating, 18]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:K11a18_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[6]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[11, Alternating, 18]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 13 29 2 3
-37 + -- - -- + -- + 29 t - 13 t + 3 t
-37 + -- - -- + -- + 29 t - 13 t + 3 t
3 2 t
3 2 t
t t</nowiki></pre></td></tr>
t t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 18]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[11, Alternating, 18]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6
1 + 4 z + 5 z + 3 z</nowiki></pre></td></tr>
1 + 4 z + 5 z + 3 z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 18]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 18]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 18]], KnotSignature[Knot[11, Alternating, 18]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[11, Alternating, 18]], KnotSignature[Knot[11, Alternating, 18]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{127, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{127, 2}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 18]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Knot[11, Alternating, 18]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 3 2 3 4 5 6 7
-7 - q + - + 13 q - 17 q + 21 q - 20 q + 18 q - 14 q + 8 q -
-7 - q + - + 13 q - 17 q + 21 q - 20 q + 18 q - 14 q + 8 q -
q
q
Line 86: Line 99:
8 9
8 9
4 q + q</nowiki></pre></td></tr>
4 q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 18]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[11, Alternating, 18]}</nowiki></pre></td></tr>
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 18]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[11, Alternating, 18]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 -2 2 4 6 8 12 14
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -6 -4 -2 2 4 6 8 12 14
-2 - q + q - q + 4 q - 3 q + 3 q + 3 q + 5 q - 3 q +
-2 - q + q - q + 4 q - 3 q + 3 q + 3 q + 5 q - 3 q +
16 18 20 22 24 28
16 18 20 22 24 28
2 q - 2 q - 4 q + 2 q - 2 q + q</nowiki></pre></td></tr>
2 q - 2 q - 4 q + 2 q - 2 q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 18]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[11, Alternating, 18]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
-8 5 5 -2 2 z 11 z 14 z 6 z 2 z
-8 5 5 -2 2 z 11 z 14 z 6 z 2 z
-1 + a + -- + -- - a - --- - ---- - ---- - --- + a z + 3 z + --- -
-1 + a + -- + -- - a - --- - ---- - ---- - --- + a z + 3 z + --- -
Line 131: Line 144:
7 5 3 6 4
7 5 3 6 4
a a a a a</nowiki></pre></td></tr>
a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 18]], Vassiliev[3][Knot[11, Alternating, 18]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[11, Alternating, 18]], Vassiliev[3][Knot[11, Alternating, 18]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 5}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{4, 5}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 18]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[11, Alternating, 18]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 5 2 q 3 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 1 2 1 5 2 q 3 5
8 q + 6 q + ----- + ----- + ---- + --- + --- + 10 q t + 7 q t +
8 q + 6 q + ----- + ----- + ---- + --- + --- + 10 q t + 7 q t +
5 3 3 2 2 q t t
5 3 3 2 2 q t t
Line 144: Line 157:
11 5 13 5 13 6 15 6 15 7 17 7 19 8
11 5 13 5 13 6 15 6 15 7 17 7 19 8
5 q t + 9 q t + 3 q t + 5 q t + q t + 3 q t + q t</nowiki></pre></td></tr>
5 q t + 9 q t + 3 q t + 5 q t + q t + 3 q t + q t</nowiki></pre></td></tr>
</table>
</table> }}

[[Category:Knot Page]]

Latest revision as of 02:01, 3 September 2005

K11a17.gif

K11a17

K11a19.gif

K11a19

K11a18.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a18 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X12,6,13,5 X2837 X16,10,17,9 X6,12,7,11 X20,13,21,14 X18,16,19,15 X10,18,11,17 X22,19,1,20 X14,21,15,22
Gauss code 1, -4, 2, -1, 3, -6, 4, -2, 5, -9, 6, -3, 7, -11, 8, -5, 9, -8, 10, -7, 11, -10
Dowker-Thistlethwaite code 4 8 12 2 16 6 20 18 10 22 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a18 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a18/ThurstonBennequinNumber
Hyperbolic Volume 16.03
A-Polynomial See Data:K11a18/A-polynomial

[edit Notes for K11a18's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a18's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 127, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a18/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a18/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a18. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345678χ
19           11
17          3 -3
15         51 4
13        93  -6
11       95   4
9      119    -2
7     109     1
5    711      4
3   610       -4
1  28        6
-1 15         -4
-3 2          2
-51           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a17.gif

K11a17

K11a19.gif

K11a19