T(25,2): Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
(4 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
<!-- Script generated - do not edit! --> |
|||
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. --> |
|||
<!-- --> |
<!-- --> |
||
<!-- --> |
|||
<!-- WARNING! WARNING! WARNING! |
|||
<span id="top"></span> |
|||
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit! |
|||
<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page. |
|||
{{Knot Navigation Links|prev=T(6,5)|next=T(13,3)|imageext=jpg}} |
|||
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately. |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. --> |
|||
{| align=left |
|||
<!-- --> |
|||
⚫ | |||
{{Torus Knot Page| |
|||
|[[Image:T(25,2).jpg]] |
|||
m = 25 | |
|||
⚫ | |||
n = 2 | |
|||
⚫ | |||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/25.2.html T(25,2)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
{{:T(25,2) Quick Notes}} |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
|} |
|||
⚫ | |||
same_alexander = | |
|||
<br style="clear:both" /> |
|||
same_jones = | |
|||
⚫ | |||
{{:T(25,2) Further Notes and Views}} |
|||
===Knot presentations=== |
|||
{| |
|||
|'''[[Planar Diagrams|Planar diagram presentation]]''' |
|||
|style="padding-left: 1em;" | X<sub>23,49,24,48</sub> X<sub>49,25,50,24</sub> X<sub>25,1,26,50</sub> X<sub>1,27,2,26</sub> X<sub>27,3,28,2</sub> X<sub>3,29,4,28</sub> X<sub>29,5,30,4</sub> X<sub>5,31,6,30</sub> X<sub>31,7,32,6</sub> X<sub>7,33,8,32</sub> X<sub>33,9,34,8</sub> X<sub>9,35,10,34</sub> X<sub>35,11,36,10</sub> X<sub>11,37,12,36</sub> X<sub>37,13,38,12</sub> X<sub>13,39,14,38</sub> X<sub>39,15,40,14</sub> X<sub>15,41,16,40</sub> X<sub>41,17,42,16</sub> X<sub>17,43,18,42</sub> X<sub>43,19,44,18</sub> X<sub>19,45,20,44</sub> X<sub>45,21,46,20</sub> X<sub>21,47,22,46</sub> X<sub>47,23,48,22</sub> |
|||
|- |
|||
|'''[[Gauss Codes|Gauss code]]''' |
|||
|style="padding-left: 1em;" | {-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 1, -2, 3} |
|||
|- |
|||
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]''' |
|||
|style="padding-left: 1em;" | 26 28 30 32 34 36 38 40 42 44 46 48 50 2 4 6 8 10 12 14 16 18 20 22 24 |
|||
|} |
|||
{{Polynomial Invariants|name=T(25,2)}} |
|||
===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]=== |
|||
{| style="margin-left: 1em;" |
|||
|- |
|||
|'''V<sub>2</sub> and V<sub>3</sub>''' |
|||
|style="padding-left: 1em;" | {0, 650} |
|||
|} |
|||
===[[Khovanov Homology]]=== |
|||
The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>24 is the signature of T(25,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
|||
⚫ | |||
<tr align=center> |
<tr align=center> |
||
<td width=6.66667%><table cellpadding=0 cellspacing=0> |
<td width=6.66667%><table cellpadding=0 cellspacing=0> |
||
<tr><td>\</td><td> </td><td>r</td></tr> |
<tr><td>\</td><td> </td><td>r</td></tr> |
||
<tr><td> </td><td> \ </td><td> </td></tr> |
<tr><td> </td><td> \ </td><td> </td></tr> |
||
<tr><td>j</td><td> </td><td>\</td></tr> |
<tr><td>j</td><td> </td><td>\</td></tr> |
||
</table></td> |
</table></td> |
||
<td width=3.33333%>0</td ><td width=3.33333%>1</td ><td width=3.33333%>2</td ><td width=3.33333%>3</td ><td width=3.33333%>4</td ><td width=3.33333%>5</td ><td width=3.33333%>6</td ><td width=3.33333%>7</td ><td width=3.33333%>8</td ><td width=3.33333%>9</td ><td width=3.33333%>10</td ><td width=3.33333%>11</td ><td width=3.33333%>12</td ><td width=3.33333%>13</td ><td width=3.33333%>14</td ><td width=3.33333%>15</td ><td width=3.33333%>16</td ><td width=3.33333%>17</td ><td width=3.33333%>18</td ><td width=3.33333%>19</td ><td width=3.33333%>20</td ><td width=3.33333%>21</td ><td width=3.33333%>22</td ><td width=3.33333%>23</td ><td width=3.33333%>24</td ><td width=3.33333%>25</td ><td width=6.66667%>χ</td></tr> |
<td width=3.33333%>0</td ><td width=3.33333%>1</td ><td width=3.33333%>2</td ><td width=3.33333%>3</td ><td width=3.33333%>4</td ><td width=3.33333%>5</td ><td width=3.33333%>6</td ><td width=3.33333%>7</td ><td width=3.33333%>8</td ><td width=3.33333%>9</td ><td width=3.33333%>10</td ><td width=3.33333%>11</td ><td width=3.33333%>12</td ><td width=3.33333%>13</td ><td width=3.33333%>14</td ><td width=3.33333%>15</td ><td width=3.33333%>16</td ><td width=3.33333%>17</td ><td width=3.33333%>18</td ><td width=3.33333%>19</td ><td width=3.33333%>20</td ><td width=3.33333%>21</td ><td width=3.33333%>22</td ><td width=3.33333%>23</td ><td width=3.33333%>24</td ><td width=3.33333%>25</td ><td width=6.66667%>χ</td></tr> |
||
<tr align=center><td>75</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
<tr align=center><td>75</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
||
<tr align=center><td>73</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
<tr align=center><td>73</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow> </td><td>0</td></tr> |
||
Line 82: | Line 56: | ||
<tr align=center><td>25</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>25</td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
<tr align=center><td>23</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
<tr align=center><td>23</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
||
</table> |
</table> | |
||
coloured_jones_2 = | |
|||
coloured_jones_3 = | |
|||
{{Computer Talk Header}} |
|||
coloured_jones_4 = | |
|||
coloured_jones_5 = | |
|||
⚫ | |||
coloured_jones_6 = | |
|||
<tr valign=top> |
|||
coloured_jones_7 = | |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
computer_talk = |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
<table> |
|||
</tr> |
|||
⚫ | |||
⚫ | |||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[25, 2]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>25</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>TubePlot[TorusKnot[25, 2]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:T(25,2).jpg]]</td></tr><tr valign=top><td><tt><font color=blue>Out[3]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
⚫ | |||
⚫ | |||
X[1, 27, 2, 26], X[27, 3, 28, 2], X[3, 29, 4, 28], X[29, 5, 30, 4], |
X[1, 27, 2, 26], X[27, 3, 28, 2], X[3, 29, 4, 28], X[29, 5, 30, 4], |
||
Line 110: | Line 89: | ||
X[21, 47, 22, 46], X[47, 23, 48, 22]]</nowiki></pre></td></tr> |
X[21, 47, 22, 46], X[47, 23, 48, 22]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[25, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, |
||
19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, |
19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, |
||
Line 118: | Line 97: | ||
1, -2, 3]</nowiki></pre></td></tr> |
1, -2, 3]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[25, 2]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, |
||
1, 1, 1, 1}]</nowiki></pre></td></tr> |
1, 1, 1, 1}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[25, 2]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -12 -11 -10 -9 -8 -7 -6 -5 -4 -3 |
||
1 + t - t + t - t + t - t + t - t + t - t + |
1 + t - t + t - t + t - t + t - t + t - t + |
||
Line 129: | Line 108: | ||
t - - - t + t - t + t - t + t - t + t - t + t - t + t |
t - - - t + t - t + t - t + t - t + t - t + t - t + t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[25, 2]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 |
||
1 + 78 z + 1001 z + 5005 z + 12870 z + 19448 z + 18564 z + |
1 + 78 z + 1001 z + 5005 z + 12870 z + 19448 z + 18564 z + |
||
14 16 18 20 22 24 |
14 16 18 20 22 24 |
||
11628 z + 4845 z + 1330 z + 231 z + 23 z + z</nowiki></pre></td></tr> |
11628 z + 4845 z + 1330 z + 231 z + 23 z + z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[25, 2]], KnotSignature[TorusKnot[25, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{25, 24}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[25, 2]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 12 14 15 16 17 18 19 20 21 22 23 24 |
||
q + q - q + q - q + q - q + q - q + q - q + q - |
q + q - q + q - q + q - q + q - q + q - q + q - |
||
Line 148: | Line 127: | ||
36 37 |
36 37 |
||
q - q</nowiki></pre></td></tr> |
q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[25, 2]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[25, 2]], Vassiliev[3][TorusKnot[25, 2]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{78, 650}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[25, 2]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 23 25 27 2 31 3 31 4 35 5 35 6 39 7 |
||
⚫ | |||
q + q + q t + q t + q t + q t + q t + q t + |
q + q + q t + q t + q t + q t + q t + q t + |
||
Line 169: | Line 147: | ||
67 22 71 23 71 24 75 25 |
67 22 71 23 71 24 75 25 |
||
q t + q t + q t + q t</nowiki></pre></td></tr> |
q t + q t + q t + q t</nowiki></pre></td></tr> |
||
</table> |
</table> }} |
Latest revision as of 10:37, 31 August 2005
|
|
See other torus knots | |
Edit T(25,2) Quick Notes
|
Edit T(25,2) Further Notes and Views
Knot presentations
Planar diagram presentation | X23,49,24,48 X49,25,50,24 X25,1,26,50 X1,27,2,26 X27,3,28,2 X3,29,4,28 X29,5,30,4 X5,31,6,30 X31,7,32,6 X7,33,8,32 X33,9,34,8 X9,35,10,34 X35,11,36,10 X11,37,12,36 X37,13,38,12 X13,39,14,38 X39,15,40,14 X15,41,16,40 X41,17,42,16 X17,43,18,42 X43,19,44,18 X19,45,20,44 X45,21,46,20 X21,47,22,46 X47,23,48,22 |
Gauss code | -4, 5, -6, 7, -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 1, -2, 3 |
Dowker-Thistlethwaite code | 26 28 30 32 34 36 38 40 42 44 46 48 50 2 4 6 8 10 12 14 16 18 20 22 24 |
Braid presentation |
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["T(25,2)"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 25, 24 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["T(25,2)"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (78, 650) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(25,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Torus Knot Page master template (intermediate). See/edit the Torus Knot_Splice_Base (expert). Back to the top. |
|