T(17,3): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- Script generated - do not edit! -->
<!-- This page was generated from the splice template [[Torus_Knot_Splice_Base]]. Please do not edit!

<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus_Knot_Splice_Base]]. -->
<!-- -->
<!-- -->
<!-- -->

<!-- WARNING! WARNING! WARNING!
<span id="top"></span>
<!-- This page was generated from the splice template [[Torus Knot Splice Template]]. Please do not edit!

<!-- Almost certainly, you want to edit [[Template:Torus Knot Page]], which actually produces this page.
{{Knot Navigation Links|prev=T(33,2)|next=T(7,6)|imageext=jpg}}
<!-- The text below simply calls [[Template:Torus Knot Page]] setting the values of all the parameters appropriately.

<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Torus Knot Splice Template]]. -->
{| align=left
<!-- -->
|- valign=top
{{Torus Knot Page|
|[[Image:T(17,3).jpg]]
m = 17 |
|Visit [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-6,-7,9,10,-12,-13,15,16,-18,-19,21,22,-24,-25,27,28,-30,-31,33,34,-2,-3,5,6,-8,-9,11,12,-14,-15,17,18,-20,-21,23,24,-26,-27,29,30,-32,-33,1,2,-4,-5,7,8,-10,-11,13,14,-16,-17,19,20,-22,-23,25,26,-28,-29,31,32,-34,-1,3,4/goTop.html T(17,3)'s page] at [http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html Knotilus]!
n = 3 |

KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-6,-7,9,10,-12,-13,15,16,-18,-19,21,22,-24,-25,27,28,-30,-31,33,34,-2,-3,5,6,-8,-9,11,12,-14,-15,17,18,-20,-21,23,24,-26,-27,29,30,-32,-33,1,2,-4,-5,7,8,-10,-11,13,14,-16,-17,19,20,-22,-23,25,26,-28,-29,31,32,-34,-1,3,4/goTop.html |
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/17.3.html T(17,3)'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]!
braid_table = <table cellspacing=0 cellpadding=0 border=0>

<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
{{:T(17,3) Quick Notes}}
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]]</td></tr>
|}
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]]</td></tr>

</table> |
<br style="clear:both" />
same_alexander = |

same_jones = |
{{:T(17,3) Further Notes and Views}}
khovanov_table = <table border=1>

===Knot presentations===

{|
|'''[[Planar Diagrams|Planar diagram presentation]]'''
|style="padding-left: 1em;" | X<sub>66,44,67,43</sub> X<sub>21,45,22,44</sub> X<sub>22,68,23,67</sub> X<sub>45,1,46,68</sub> X<sub>46,24,47,23</sub> X<sub>1,25,2,24</sub> X<sub>2,48,3,47</sub> X<sub>25,49,26,48</sub> X<sub>26,4,27,3</sub> X<sub>49,5,50,4</sub> X<sub>50,28,51,27</sub> X<sub>5,29,6,28</sub> X<sub>6,52,7,51</sub> X<sub>29,53,30,52</sub> X<sub>30,8,31,7</sub> X<sub>53,9,54,8</sub> X<sub>54,32,55,31</sub> X<sub>9,33,10,32</sub> X<sub>10,56,11,55</sub> X<sub>33,57,34,56</sub> X<sub>34,12,35,11</sub> X<sub>57,13,58,12</sub> X<sub>58,36,59,35</sub> X<sub>13,37,14,36</sub> X<sub>14,60,15,59</sub> X<sub>37,61,38,60</sub> X<sub>38,16,39,15</sub> X<sub>61,17,62,16</sub> X<sub>62,40,63,39</sub> X<sub>17,41,18,40</sub> X<sub>18,64,19,63</sub> X<sub>41,65,42,64</sub> X<sub>42,20,43,19</sub> X<sub>65,21,66,20</sub>
|-
|'''[[Gauss Codes|Gauss code]]'''
|style="padding-left: 1em;" | {-6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 33, 34, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -33, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31, 32, -34, -1, 3, 4}
|-
|'''[[DT (Dowker-Thistlethwaite) Codes|Dowker-Thistlethwaite code]]'''
|style="padding-left: 1em;" | 24 -26 28 -30 32 -34 36 -38 40 -42 44 -46 48 -50 52 -54 56 -58 60 -62 64 -66 68 -2 4 -6 8 -10 12 -14 16 -18 20 -22
|}

{{Polynomial Invariants|name=T(17,3)}}

===[[Finite Type (Vassiliev) Invariants|Vassiliev invariants]]===
{| style="margin-left: 1em;"
|-
|'''V<sub>2</sub> and V<sub>3</sub>'''
|style="padding-left: 1em;" | {0, 816}
|}

===[[Khovanov Homology]]===

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>24 is the signature of T(17,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=7.14286%><table cellpadding=0 cellspacing=0>
<td width=7.14286%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
</table></td>
<td width=3.57143%>0</td ><td width=3.57143%>1</td ><td width=3.57143%>2</td ><td width=3.57143%>3</td ><td width=3.57143%>4</td ><td width=3.57143%>5</td ><td width=3.57143%>6</td ><td width=3.57143%>7</td ><td width=3.57143%>8</td ><td width=3.57143%>9</td ><td width=3.57143%>10</td ><td width=3.57143%>11</td ><td width=3.57143%>12</td ><td width=3.57143%>13</td ><td width=3.57143%>14</td ><td width=3.57143%>15</td ><td width=3.57143%>16</td ><td width=3.57143%>17</td ><td width=3.57143%>18</td ><td width=3.57143%>19</td ><td width=3.57143%>20</td ><td width=3.57143%>21</td ><td width=3.57143%>22</td ><td width=3.57143%>23</td ><td width=7.14286%>&chi;</td></tr>
<td width=3.57143%>0</td ><td width=3.57143%>1</td ><td width=3.57143%>2</td ><td width=3.57143%>3</td ><td width=3.57143%>4</td ><td width=3.57143%>5</td ><td width=3.57143%>6</td ><td width=3.57143%>7</td ><td width=3.57143%>8</td ><td width=3.57143%>9</td ><td width=3.57143%>10</td ><td width=3.57143%>11</td ><td width=3.57143%>12</td ><td width=3.57143%>13</td ><td width=3.57143%>14</td ><td width=3.57143%>15</td ><td width=3.57143%>16</td ><td width=3.57143%>17</td ><td width=3.57143%>18</td ><td width=3.57143%>19</td ><td width=3.57143%>20</td ><td width=3.57143%>21</td ><td width=3.57143%>22</td ><td width=3.57143%>23</td ><td width=7.14286%>&chi;</td></tr>
<tr align=center><td>69</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>69</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>-1</td></tr>
<tr align=center><td>67</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
<tr align=center><td>67</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
Line 75: Line 50:
<tr align=center><td>33</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>33</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>31</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>31</td><td bgcolor=red>1</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table> |
coloured_jones_2 = |

coloured_jones_3 = |
{{Computer Talk Header}}
coloured_jones_4 = |

coloured_jones_5 = |
<table>
coloured_jones_6 = |
<tr valign=top>
coloured_jones_7 = |
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
computer_talk =
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<table>
</tr>
<tr valign=top>
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 19, 2005, 13:11:25)...</pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>34</nowiki></pre></td></tr>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[66, 44, 67, 43], X[21, 45, 22, 44], X[22, 68, 23, 67],
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>34</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>TubePlot[TorusKnot[17, 3]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:T(17,3).jpg]]</td></tr><tr valign=top><td><tt><font color=blue>Out[3]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[66, 44, 67, 43], X[21, 45, 22, 44], X[22, 68, 23, 67],
X[45, 1, 46, 68], X[46, 24, 47, 23], X[1, 25, 2, 24],
X[45, 1, 46, 68], X[46, 24, 47, 23], X[1, 25, 2, 24],
Line 109: Line 89:
X[41, 65, 42, 64], X[42, 20, 43, 19], X[65, 21, 66, 20]]</nowiki></pre></td></tr>
X[41, 65, 42, 64], X[42, 20, 43, 19], X[65, 21, 66, 20]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25,
27, 28, -30, -31, 33, 34, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17,
27, 28, -30, -31, 33, 34, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17,
Line 119: Line 99:
32, -34, -1, 3, 4]</nowiki></pre></td></tr>
32, -34, -1, 3, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[TorusKnot[17, 3]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1,
2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]</nowiki></pre></td></tr>
2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[17, 3]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[17, 3]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -15 -13 -12 -10 -9 -7 -6 -4 -3
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -15 -13 -12 -10 -9 -7 -6 -4 -3
-1 + t - t + t - t + t - t + t - t + t - t +
-1 + t - t + t - t + t - t + t - t + t - t +
Line 130: Line 110:
- + t - t + t - t + t - t + t - t + t - t + t
- + t - t + t - t + t - t + t - t + t - t + t
t</nowiki></pre></td></tr>
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[17, 3]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[17, 3]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12
1 + 96 z + 2280 z + 21204 z + 102752 z + 298870 z + 566618 z +
1 + 96 z + 2280 z + 21204 z + 102752 z + 298870 z + 566618 z +
Line 139: Line 119:
24 26 28 30 32
24 26 28 30 32
20175 z + 3628 z + 434 z + 31 z + z</nowiki></pre></td></tr>
20175 z + 3628 z + 434 z + 31 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[17, 3]], KnotSignature[TorusKnot[17, 3]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[TorusKnot[17, 3]], KnotSignature[TorusKnot[17, 3]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 24}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{1, 24}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[17, 3]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[TorusKnot[17, 3]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 16 18 34
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 16 18 34
q + q - q</nowiki></pre></td></tr>
q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[17, 3]][q]</nowiki></pre></td></tr>

<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[TorusKnot[17, 3]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[17, 3]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[TorusKnot[17, 3]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>NotAvailable</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[17, 3]], Vassiliev[3][TorusKnot[17, 3]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][TorusKnot[17, 3]], Vassiliev[3][TorusKnot[17, 3]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{96, 816}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 816}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[17, 3]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[17, 3]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31 33 35 2 39 3 37 4 39 4 41 5 43 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 31 33 35 2 39 3 37 4 39 4 41 5 43 5
q + q + q t + q t + q t + q t + q t + q t +
q + q + q t + q t + q t + q t + q t + q t +
Line 170: Line 149:
63 20 65 21 67 21 65 22 69 23
63 20 65 21 67 21 65 22 69 23
q t + q t + q t + q t + q t</nowiki></pre></td></tr>
q t + q t + q t + q t + q t</nowiki></pre></td></tr>
</table>
</table> }}

Latest revision as of 10:37, 31 August 2005

T(33,2).jpg

T(33,2)

T(7,6).jpg

T(7,6)

T(17,3).jpg See other torus knots

Visit T(17,3) at Knotilus!

Edit T(17,3) Quick Notes


Edit T(17,3) Further Notes and Views


Knot presentations

Planar diagram presentation X66,44,67,43 X21,45,22,44 X22,68,23,67 X45,1,46,68 X46,24,47,23 X1,25,2,24 X2,48,3,47 X25,49,26,48 X26,4,27,3 X49,5,50,4 X50,28,51,27 X5,29,6,28 X6,52,7,51 X29,53,30,52 X30,8,31,7 X53,9,54,8 X54,32,55,31 X9,33,10,32 X10,56,11,55 X33,57,34,56 X34,12,35,11 X57,13,58,12 X58,36,59,35 X13,37,14,36 X14,60,15,59 X37,61,38,60 X38,16,39,15 X61,17,62,16 X62,40,63,39 X17,41,18,40 X18,64,19,63 X41,65,42,64 X42,20,43,19 X65,21,66,20
Gauss code -6, -7, 9, 10, -12, -13, 15, 16, -18, -19, 21, 22, -24, -25, 27, 28, -30, -31, 33, 34, -2, -3, 5, 6, -8, -9, 11, 12, -14, -15, 17, 18, -20, -21, 23, 24, -26, -27, 29, 30, -32, -33, 1, 2, -4, -5, 7, 8, -10, -11, 13, 14, -16, -17, 19, 20, -22, -23, 25, 26, -28, -29, 31, 32, -34, -1, 3, 4
Dowker-Thistlethwaite code 24 -26 28 -30 32 -34 36 -38 40 -42 44 -46 48 -50 52 -54 56 -58 60 -62 64 -66 68 -2 4 -6 8 -10 12 -14 16 -18 20 -22
Braid presentation
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 1, 24 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources) Data:T(17,3)/HOMFLYPT Polynomial
Kauffman polynomial (db, data sources) Data:T(17,3)/Kauffman Polynomial
The A2 invariant Data:T(17,3)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(17,3)/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (96, 816)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(17,3)/V 2,1 Data:T(17,3)/V 3,1 Data:T(17,3)/V 4,1 Data:T(17,3)/V 4,2 Data:T(17,3)/V 4,3 Data:T(17,3)/V 5,1 Data:T(17,3)/V 5,2 Data:T(17,3)/V 5,3 Data:T(17,3)/V 5,4 Data:T(17,3)/V 6,1 Data:T(17,3)/V 6,2 Data:T(17,3)/V 6,3 Data:T(17,3)/V 6,4 Data:T(17,3)/V 6,5 Data:T(17,3)/V 6,6 Data:T(17,3)/V 6,7 Data:T(17,3)/V 6,8 Data:T(17,3)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 24 is the signature of T(17,3). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011121314151617181920212223χ
69                       1-1
67                     1  -1
65                     11 0
63                   11   0
61                 1  1   0
59                 11     0
57               11       0
55             1  1       0
53             11         0
51           11           0
49         1  1           0
47         11             0
45       11               0
43     1  1               0
41     11                 0
39   11                   0
37    1                   1
35  1                     1
331                       1
311                       1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Torus Knot Page master template (intermediate).

See/edit the Torus Knot_Splice_Base (expert).

Back to the top.

T(33,2).jpg

T(33,2)

T(7,6).jpg

T(7,6)