L9a17: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template "Link_Splice_Template". Please do not edit! -->
<!-- This page was generated from the splice template [[Link_Splice_Base]]. Please do not edit!
<!-- --> <!--
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
-->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- <math>\text{Null}</math> -->
<!-- WARNING! WARNING! WARNING!
<!-- This page was generated from the splice template [[Link Splice Template]]. Please do not edit!
<!-- Almost certainly, you want to edit [[Template:Link Page]], which actually produces this page.
<!-- The text below simply calls [[Template:Link Page]] setting the values of all the parameters appropriately.
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Link Splice Template]]. -->
<!-- <math>\text{Null}</math> -->
{{Link Page|
{{Link Page|
n = 9 |
n = 9 |
Line 7: Line 16:
k = 17 |
k = 17 |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-9:8,-1,3,-5,4,-7,6,-2,9,-6,7,-3,5,-4/goTop.html |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-9:8,-1,3,-5,4,-7,6,-2,9,-6,7,-3,5,-4/goTop.html |
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre">
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart3.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]]</td></tr>
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr>
</table> |
khovanov_table = <table border=1>
khovanov_table = <table border=1>
<tr align=center>
<tr align=center>
Line 33: Line 49:
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</td></tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr>
Line 49: Line 65:
-4}]</nowiki></pre></td></tr>
-4}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {1, 2, 2, 2, -3, -4, -3, 2, -1, 2, 3, 2, 2, 4, -3}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L9a17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 17]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L9a17_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Link[9, Alternating, 17]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[9, Alternating, 17]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Link[9, Alternating, 17]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 3/2 5/2 7/2 9/2 11/2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[9, Alternating, 17]], KnotSignature[Link[9, Alternating, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, 3}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 1 3/2 5/2 7/2 9/2 11/2
-(-------) + Sqrt[q] - 4 q + 5 q - 7 q + 7 q - 6 q +
-(-------) + Sqrt[q] - 4 q + 5 q - 7 q + 7 q - 6 q +
Sqrt[q]
Sqrt[q]
Line 66: Line 76:
13/2 15/2 17/2
13/2 15/2 17/2
5 q - 3 q + q</nowiki></pre></td></tr>
5 q - 3 q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 17]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 4 6 8 12 16 18 20 24 26
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 2 4 6 8 12 16 18 20 24 26
1 + q + 2 q + 4 q + q + 3 q - q - 2 q + q - q + q - q</nowiki></pre></td></tr>
1 + q + 2 q + 4 q + q + 3 q - q - 2 q + q - q + q - q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[9, Alternating, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[9, Alternating, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 3 5 5
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 3 5 5
1 3 2 z 4 z 3 z z 2 z 3 z z z z
1 3 2 z 4 z 3 z z 2 z 3 z z z z
---- - ---- + --- + -- - --- + --- + -- - ---- - ---- + -- - -- - --
---- - ---- + --- + -- - --- + --- + -- - ---- - ---- + -- - -- - --
5 3 a z 7 3 a 7 5 3 a 5 3
5 3 a z 7 3 a 7 5 3 a 5 3
a z a z a a a a a a a</nowiki></pre></td></tr>
a z a z a a a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[9, Alternating, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[9, Alternating, 17]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2
-6 3 3 1 3 2 2 z 7 z 5 z z 2 z
-6 3 3 1 3 2 2 z 7 z 5 z z 2 z
-a - -- - -- + ---- + ---- + --- + --- - --- - --- + --- - ---- +
-a - -- - -- + ---- + ---- + --- + --- - --- - --- + --- - ---- +
Line 99: Line 109:
2 7 5 3 6 4
2 7 5 3 6 4
a a a a a a</nowiki></pre></td></tr>
a a a a a a</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Link[9, Alternating, 17]], Vassiliev[3][Link[9, Alternating, 17]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 17]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
{0, -(-)}
2</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 17]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2
2 4 1 q 4 6 6 2 8 2
2 4 1 q 4 6 6 2 8 2
4 q + 2 q + ----- + -- + 3 q t + 2 q t + 4 q t + 3 q t +
4 q + 2 q + ----- + -- + 3 q t + 2 q t + 4 q t + 3 q t +

Latest revision as of 02:17, 3 September 2005

L9a16.gif

L9a16

L9a18.gif

L9a18

L9a17.gif
(Knotscape image)
See the full Thistlethwaite Link Table (up to 11 crossings).

Visit L9a17 at Knotilus!

L9a17 is in the Rolfsen table of links.


Link Presentations

[edit Notes on L9a17's Link Presentations]

Planar diagram presentation X6172 X12,4,13,3 X16,8,17,7 X18,10,5,9 X8,18,9,17 X14,12,15,11 X10,16,11,15 X2536 X4,14,1,13
Gauss code {1, -8, 2, -9}, {8, -1, 3, -5, 4, -7, 6, -2, 9, -6, 7, -3, 5, -4}
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation L9a17 ML.gif

Polynomial invariants

Multivariable Alexander Polynomial (in , , , ...) (db)
Jones polynomial (db)
Signature 3 (db)
HOMFLY-PT polynomial (db)
Kauffman polynomial (db)

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ).   
\ r
  \  
j \
-2-101234567χ
18         1-1
16        2 2
14       31 -2
12      32  1
10     43   -1
8    33    0
6   24     2
4  23      -1
2 14       3
0          0
-21         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages

See/edit the Link Page master template (intermediate).

See/edit the Link_Splice_Base (expert).

Back to the top.

L9a16.gif

L9a16

L9a18.gif

L9a18