L9a17
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a17 is [math]\displaystyle{ 9^2_{27} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a17's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X16,8,17,7 X18,10,5,9 X8,18,9,17 X14,12,15,11 X10,16,11,15 X2536 X4,14,1,13 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -5, 4, -7, 6, -2, 9, -6, 7, -3, 5, -4} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(t(1)-1) (t(2)-1) \left(2 t(2)^2-t(2)+2\right)}{\sqrt{t(1)} t(2)^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ 7 q^{9/2}-7 q^{7/2}+5 q^{5/2}-4 q^{3/2}+q^{17/2}-3 q^{15/2}+5 q^{13/2}-6 q^{11/2}+\sqrt{q}-\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^5 a^{-3} -z^5 a^{-5} +z^3 a^{-1} -3 z^3 a^{-3} -2 z^3 a^{-5} +z^3 a^{-7} +3 z a^{-1} -4 z a^{-3} +z a^{-7} +2 a^{-1} z^{-1} -3 a^{-3} z^{-1} + a^{-5} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -4 z^7 a^{-5} -3 z^7 a^{-7} -z^6 a^{-2} +z^6 a^{-4} -2 z^6 a^{-6} -4 z^6 a^{-8} -z^5 a^{-1} -z^5 a^{-3} +7 z^5 a^{-5} +4 z^5 a^{-7} -3 z^5 a^{-9} +z^4 a^{-2} -4 z^4 a^{-4} +2 z^4 a^{-6} +6 z^4 a^{-8} -z^4 a^{-10} +4 z^3 a^{-1} +7 z^3 a^{-3} -5 z^3 a^{-5} -4 z^3 a^{-7} +4 z^3 a^{-9} +3 z^2 a^{-2} +7 z^2 a^{-4} +z^2 a^{-6} -2 z^2 a^{-8} +z^2 a^{-10} -5 z a^{-1} -7 z a^{-3} +2 z a^{-7} -3 a^{-2} -3 a^{-4} - a^{-6} +2 a^{-1} z^{-1} +3 a^{-3} z^{-1} + a^{-5} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



