5 1: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
 
(17 intermediate revisions by 3 users not shown)
Line 3: Line 3:
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].)
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. -->
<!-- <math>\text{Null}</math> -->
<!-- -->
<!-- <math>\text{Null}</math> -->
<!-- -->
{{Rolfsen Knot Page|
{{Rolfsen Knot Page|
n = 5 |
n = 5 |
k = 1 |
k = 1 |
same_alexander = <nowiki>[[10_132]], </nowiki> |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-1,4,-2,5,-3,1,-4,2,-5,3/goTop.html |
same_jones = <nowiki>[[10_132]], </nowiki> |
braid_table = <table cellspacing=0 cellpadding=0 border=0>
coloured_jones_2 = <math> q^{-19} - q^{-18} + q^{-16} -2 q^{-15} + q^{-13} - q^{-12} + q^{-10} - q^{-9} + q^{-7} + q^{-4} </math> |
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr>
coloured_jones_3 = <math>- q^{-36} + q^{-35} + q^{-31} - q^{-29} + q^{-27} - q^{-25} - q^{-21} + q^{-18} - q^{-17} + q^{-14} - q^{-13} + q^{-10} + q^{-6} </math> |
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr>
coloured_jones_4 = <math> q^{-58} - q^{-57} - q^{-54} + q^{-53} - q^{-52} + q^{-51} - q^{-49} + q^{-48} - q^{-47} + q^{-46} + q^{-45} - q^{-44} + q^{-43} - q^{-42} + q^{-41} - q^{-39} + q^{-38} - q^{-37} + q^{-36} - q^{-34} + q^{-33} - q^{-32} - q^{-29} + q^{-28} - q^{-27} + q^{-23} - q^{-22} + q^{-18} - q^{-17} + q^{-13} + q^{-8} </math> |
</table> |
coloured_jones_5 = <math>- q^{-85} + q^{-84} + q^{-81} - q^{-79} + q^{-75} - q^{-73} - q^{-72} + q^{-69} - q^{-66} + q^{-63} - q^{-60} + q^{-58} + q^{-57} - q^{-54} + q^{-52} - q^{-48} + q^{-46} - q^{-42} + q^{-40} - q^{-39} - q^{-36} + q^{-34} - q^{-33} + q^{-28} - q^{-27} + q^{-22} - q^{-21} + q^{-16} + q^{-10} </math> |
braid_crossings = 5 |
coloured_jones_6 = <math> q^{-117} - q^{-116} - q^{-113} +2 q^{-110} - q^{-109} - q^{-106} + q^{-104} +2 q^{-103} - q^{-102} -2 q^{-99} + q^{-97} +2 q^{-96} - q^{-95} -2 q^{-92} +2 q^{-89} - q^{-88} -2 q^{-85} + q^{-83} +2 q^{-82} - q^{-81} -2 q^{-78} + q^{-76} +2 q^{-75} - q^{-74} - q^{-71} + q^{-69} +2 q^{-68} - q^{-67} - q^{-64} +2 q^{-61} - q^{-60} - q^{-57} +2 q^{-54} - q^{-53} - q^{-50} + q^{-47} - q^{-46} - q^{-43} + q^{-40} - q^{-39} + q^{-33} - q^{-32} + q^{-26} - q^{-25} + q^{-19} + q^{-12} </math> |
braid_width = 2 |
coloured_jones_7 = <math>- q^{-154} + q^{-153} + q^{-150} - q^{-147} - q^{-146} + q^{-145} + q^{-142} - q^{-141} - q^{-139} - q^{-138} + q^{-137} + q^{-136} + q^{-134} - q^{-133} - q^{-131} - q^{-130} + q^{-129} + q^{-128} + q^{-127} + q^{-126} - q^{-125} - q^{-123} - q^{-122} + q^{-121} + q^{-119} + q^{-118} - q^{-117} - q^{-115} - q^{-114} + q^{-113} + q^{-111} + q^{-110} - q^{-109} - q^{-108} - q^{-107} - q^{-106} + q^{-105} + q^{-103} + q^{-102} - q^{-101} - q^{-100} - q^{-98} + q^{-97} + q^{-95} + q^{-94} - q^{-93} - q^{-92} - q^{-90} + q^{-89} + q^{-87} + q^{-86} - q^{-85} - q^{-82} + q^{-81} + q^{-79} + q^{-78} - q^{-77} - q^{-74} + q^{-71} + q^{-70} - q^{-69} - q^{-66} + q^{-63} + q^{-62} - q^{-61} - q^{-58} + q^{-54} - q^{-53} - q^{-50} + q^{-46} - q^{-45} + q^{-38} - q^{-37} + q^{-30} - q^{-29} + q^{-22} + q^{-14} </math>
braid_index = 2 |
}}
same_alexander = [[10_132]], |
same_jones = [[10_132]], |
khovanov_table = <table border=1>
<tr align=center>
<td width=20.%><table cellpadding=0 cellspacing=0>
<tr><td>\</td><td>&nbsp;</td><td>r</td></tr>
<tr><td>&nbsp;</td><td>&nbsp;\&nbsp;</td><td>&nbsp;</td></tr>
<tr><td>j</td><td>&nbsp;</td><td>\</td></tr>
</table></td>
<td width=10.%>-5</td ><td width=10.%>-4</td ><td width=10.%>-3</td ><td width=10.%>-2</td ><td width=10.%>-1</td ><td width=10.%>0</td ><td width=20.%>&chi;</td></tr>
<tr align=center><td>-3</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-5</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>1</td><td>1</td></tr>
<tr align=center><td>-7</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>-9</td><td>&nbsp;</td><td>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-11</td><td>&nbsp;</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-13</td><td bgcolor=yellow>&nbsp;</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>0</td></tr>
<tr align=center><td>-15</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>-1</td></tr>
</table> |
coloured_jones_2 = <math> q^{-4} + q^{-7} - q^{-9} + q^{-10} - q^{-12} + q^{-13} -2 q^{-15} + q^{-16} - q^{-18} + q^{-19} </math> |
coloured_jones_3 = <math> q^{-6} + q^{-10} - q^{-13} + q^{-14} - q^{-17} + q^{-18} - q^{-21} - q^{-25} + q^{-27} - q^{-29} + q^{-31} + q^{-35} - q^{-36} </math> |
coloured_jones_4 = <math> q^{-8} + q^{-13} - q^{-17} + q^{-18} - q^{-22} + q^{-23} - q^{-27} + q^{-28} - q^{-29} - q^{-32} + q^{-33} - q^{-34} + q^{-36} - q^{-37} + q^{-38} - q^{-39} + q^{-41} - q^{-42} + q^{-43} - q^{-44} + q^{-45} + q^{-46} - q^{-47} + q^{-48} - q^{-49} + q^{-51} - q^{-52} + q^{-53} - q^{-54} - q^{-57} + q^{-58} </math> |
coloured_jones_5 = <math> q^{-10} + q^{-16} - q^{-21} + q^{-22} - q^{-27} + q^{-28} - q^{-33} + q^{-34} - q^{-36} - q^{-39} + q^{-40} - q^{-42} + q^{-46} - q^{-48} + q^{-52} - q^{-54} + q^{-57} + q^{-58} - q^{-60} + q^{-63} - q^{-66} + q^{-69} - q^{-72} - q^{-73} + q^{-75} - q^{-79} + q^{-81} + q^{-84} - q^{-85} </math> |
coloured_jones_6 = <math> q^{-12} + q^{-19} - q^{-25} + q^{-26} - q^{-32} + q^{-33} - q^{-39} + q^{-40} - q^{-43} - q^{-46} + q^{-47} - q^{-50} - q^{-53} +2 q^{-54} - q^{-57} - q^{-60} +2 q^{-61} - q^{-64} - q^{-67} +2 q^{-68} + q^{-69} - q^{-71} - q^{-74} +2 q^{-75} + q^{-76} -2 q^{-78} - q^{-81} +2 q^{-82} + q^{-83} -2 q^{-85} - q^{-88} +2 q^{-89} -2 q^{-92} - q^{-95} +2 q^{-96} + q^{-97} -2 q^{-99} - q^{-102} +2 q^{-103} + q^{-104} - q^{-106} - q^{-109} +2 q^{-110} - q^{-113} - q^{-116} + q^{-117} </math> |
coloured_jones_7 = <math> q^{-14} + q^{-22} - q^{-29} + q^{-30} - q^{-37} + q^{-38} - q^{-45} + q^{-46} - q^{-50} - q^{-53} + q^{-54} - q^{-58} - q^{-61} + q^{-62} + q^{-63} - q^{-66} - q^{-69} + q^{-70} + q^{-71} - q^{-74} - q^{-77} + q^{-78} + q^{-79} + q^{-81} - q^{-82} - q^{-85} + q^{-86} + q^{-87} + q^{-89} - q^{-90} - q^{-92} - q^{-93} + q^{-94} + q^{-95} + q^{-97} - q^{-98} - q^{-100} - q^{-101} + q^{-102} + q^{-103} + q^{-105} - q^{-106} - q^{-107} - q^{-108} - q^{-109} + q^{-110} + q^{-111} + q^{-113} - q^{-114} - q^{-115} - q^{-117} + q^{-118} + q^{-119} + q^{-121} - q^{-122} - q^{-123} - q^{-125} + q^{-126} + q^{-127} + q^{-128} + q^{-129} - q^{-130} - q^{-131} - q^{-133} + q^{-134} + q^{-136} + q^{-137} - q^{-138} - q^{-139} - q^{-141} + q^{-142} + q^{-145} - q^{-146} - q^{-147} + q^{-150} + q^{-153} - q^{-154} </math> |
computer_talk =
<table>
<tr valign=top>
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:=&nbsp;&nbsp;&nbsp;&nbsp;</pre></td>
<td align=left><pre style="color: red; border: 0px; padding: 0em">&lt;&lt; KnotTheory`</pre></td>
</tr>
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[5, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 8, 4, 9], X[5, 10, 6, 1], X[7, 2, 8, 3],
X[9, 4, 10, 5]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[5, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 4, -2, 5, -3, 1, -4, 2, -5, 3]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[5, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 10, 2, 4]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[5, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[2, {-1, -1, -1, -1, -1}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 5}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[5, 1]]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>2</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[5, 1]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:5_1_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> (#[Knot[5, 1]]&) /@ {
SymmetryType, UnknottingNumber, ThreeGenus,
BridgeIndex, SuperBridgeIndex, NakanishiIndex
}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 2, 2, 2, 3, 1}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[5, 1]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -2 1 2
1 + t - - - t + t
t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[5, 1]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4
1 + 3 z + z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[5, 1]], KnotSignature[Knot[5, 1]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, -4}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[5, 1]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -7 -6 -5 -4 -2
-q + q - q + q + q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[5, 1], Knot[10, 132]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[5, 1]][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -22 -20 -18 -14 -12 2 -8 -6
-q - q - q + q + q + --- + q + q
10
q</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[5, 1]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 4 2 6 2 4 4
3 a - 2 a + 4 a z - a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[5, 1]][a, z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 6 5 7 9 4 2 6 2 8 2
3 a + 2 a - 2 a z - a z + a z - 4 a z - 3 a z + a z +
5 3 7 3 4 4 6 4
a z + a z + a z + a z</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[5, 1]], Vassiliev[3][Knot[5, 1]]}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{3, -5}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[5, 1]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 -3 1 1 1 1
q + q + ------ + ------ + ------ + -----
15 5 11 4 11 3 7 2
q t q t q t q t</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[5, 1], 2][q]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -19 -18 -16 2 -13 -12 -10 -9 -7 -4
q - q + q - --- + q - q + q - q + q + q
15
q</nowiki></pre></td></tr>
</table> }}

Latest revision as of 05:10, 3 March 2013

4 1.gif

4_1

5 2.gif

5_2

5 1.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 5 1 at Knotilus!

An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2).

When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1


A kolam of a 2x3 dot array
The VISA Interlink Logo [1]
Version of the US bicentennial emblem
A pentagonal table by Bob Mackay [2]
The Utah State Parks logo
As impossible object ("Penrose" pentagram)
Folded ribbon which is single-sided (more complex version of Möbius Strip).
Non-pentagonal shape.
Pentagram of circles.
Alternate pentagram of intersecting circles.
3D-looking rendition.
Partial view of US bicentennial logo on a shirt seen in Lisboa [3]
Non-prime knot with two 5_1 configurations on a closed loop.
Knotted epitrochoid
Sum of two 5_1s, Vienna, orthodox church

This sentence was last edited by Dror. Sometime later, Scott added this sentence.

Knot presentations

Planar diagram presentation X1627 X3849 X5,10,6,1 X7283 X9,4,10,5
Gauss code -1, 4, -2, 5, -3, 1, -4, 2, -5, 3
Dowker-Thistlethwaite code 6 8 10 2 4
Conway Notation [5]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gif

Length is 5, width is 2,

Braid index is 2

5 1 ML.gif 5 1 AP.gif
[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}]

[edit Notes on presentations of 5 1]

Knot 5_1.
A graph, knot 5_1.

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index 3
Nakanishi index 1
Maximal Thurston-Bennequin number [-10][3]
Hyperbolic Volume Not hyperbolic
A-Polynomial See Data:5 1/A-polynomial

[edit Notes for 5 1's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 5 1's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {[[10_132]], }

Same Jones Polynomial (up to mirroring, ): {[[10_132]], }

Vassiliev invariants

V2 and V3: (3, -5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10χ
-3     11
-5     11
-7   1  1
-9      0
-11 11   0
-13      0
-151     -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials