10 159: Difference between revisions
DrorsRobot (talk | contribs) No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
<!-- WARNING! WARNING! WARNING! |
||
<!-- This page was generated from the splice |
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
||
<!-- |
<!-- --> |
||
<!-- |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = 10 | |
n = 10 | |
||
Line 43: | Line 43: | ||
coloured_jones_5 = <math>-3 q^{11}+8 q^9+9 q^8+q^7-8 q^6-41 q^5-38 q^4+16 q^3+86 q^2+120 q+52-124 q^{-1} -295 q^{-2} -238 q^{-3} +95 q^{-4} +512 q^{-5} +581 q^{-6} +138 q^{-7} -657 q^{-8} -1148 q^{-9} -624 q^{-10} +681 q^{-11} +1694 q^{-12} +1430 q^{-13} -313 q^{-14} -2264 q^{-15} -2453 q^{-16} -304 q^{-17} +2500 q^{-18} +3528 q^{-19} +1345 q^{-20} -2518 q^{-21} -4499 q^{-22} -2455 q^{-23} +2129 q^{-24} +5219 q^{-25} +3640 q^{-26} -1581 q^{-27} -5639 q^{-28} -4590 q^{-29} +837 q^{-30} +5778 q^{-31} +5383 q^{-32} -197 q^{-33} -5683 q^{-34} -5842 q^{-35} -445 q^{-36} +5457 q^{-37} +6153 q^{-38} +908 q^{-39} -5161 q^{-40} -6232 q^{-41} -1325 q^{-42} +4800 q^{-43} +6246 q^{-44} +1674 q^{-45} -4403 q^{-46} -6154 q^{-47} -2023 q^{-48} +3900 q^{-49} +5990 q^{-50} +2420 q^{-51} -3288 q^{-52} -5736 q^{-53} -2818 q^{-54} +2517 q^{-55} +5318 q^{-56} +3223 q^{-57} -1607 q^{-58} -4729 q^{-59} -3509 q^{-60} +619 q^{-61} +3895 q^{-62} +3622 q^{-63} +343 q^{-64} -2885 q^{-65} -3436 q^{-66} -1159 q^{-67} +1779 q^{-68} +2958 q^{-69} +1675 q^{-70} -730 q^{-71} -2221 q^{-72} -1830 q^{-73} -128 q^{-74} +1400 q^{-75} +1642 q^{-76} +638 q^{-77} -632 q^{-78} -1201 q^{-79} -829 q^{-80} +67 q^{-81} +722 q^{-82} +726 q^{-83} +227 q^{-84} -300 q^{-85} -488 q^{-86} -311 q^{-87} +38 q^{-88} +264 q^{-89} +244 q^{-90} +62 q^{-91} -92 q^{-92} -137 q^{-93} -87 q^{-94} +16 q^{-95} +68 q^{-96} +50 q^{-97} +5 q^{-98} -15 q^{-99} -24 q^{-100} -17 q^{-101} +9 q^{-102} +11 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} </math> | |
coloured_jones_5 = <math>-3 q^{11}+8 q^9+9 q^8+q^7-8 q^6-41 q^5-38 q^4+16 q^3+86 q^2+120 q+52-124 q^{-1} -295 q^{-2} -238 q^{-3} +95 q^{-4} +512 q^{-5} +581 q^{-6} +138 q^{-7} -657 q^{-8} -1148 q^{-9} -624 q^{-10} +681 q^{-11} +1694 q^{-12} +1430 q^{-13} -313 q^{-14} -2264 q^{-15} -2453 q^{-16} -304 q^{-17} +2500 q^{-18} +3528 q^{-19} +1345 q^{-20} -2518 q^{-21} -4499 q^{-22} -2455 q^{-23} +2129 q^{-24} +5219 q^{-25} +3640 q^{-26} -1581 q^{-27} -5639 q^{-28} -4590 q^{-29} +837 q^{-30} +5778 q^{-31} +5383 q^{-32} -197 q^{-33} -5683 q^{-34} -5842 q^{-35} -445 q^{-36} +5457 q^{-37} +6153 q^{-38} +908 q^{-39} -5161 q^{-40} -6232 q^{-41} -1325 q^{-42} +4800 q^{-43} +6246 q^{-44} +1674 q^{-45} -4403 q^{-46} -6154 q^{-47} -2023 q^{-48} +3900 q^{-49} +5990 q^{-50} +2420 q^{-51} -3288 q^{-52} -5736 q^{-53} -2818 q^{-54} +2517 q^{-55} +5318 q^{-56} +3223 q^{-57} -1607 q^{-58} -4729 q^{-59} -3509 q^{-60} +619 q^{-61} +3895 q^{-62} +3622 q^{-63} +343 q^{-64} -2885 q^{-65} -3436 q^{-66} -1159 q^{-67} +1779 q^{-68} +2958 q^{-69} +1675 q^{-70} -730 q^{-71} -2221 q^{-72} -1830 q^{-73} -128 q^{-74} +1400 q^{-75} +1642 q^{-76} +638 q^{-77} -632 q^{-78} -1201 q^{-79} -829 q^{-80} +67 q^{-81} +722 q^{-82} +726 q^{-83} +227 q^{-84} -300 q^{-85} -488 q^{-86} -311 q^{-87} +38 q^{-88} +264 q^{-89} +244 q^{-90} +62 q^{-91} -92 q^{-92} -137 q^{-93} -87 q^{-94} +16 q^{-95} +68 q^{-96} +50 q^{-97} +5 q^{-98} -15 q^{-99} -24 q^{-100} -17 q^{-101} +9 q^{-102} +11 q^{-103} +2 q^{-104} -5 q^{-107} +3 q^{-109} - q^{-110} </math> | |
||
coloured_jones_6 = <math>q^{20}-q^{19}-q^{18}-4 q^{15}-6 q^{14}+12 q^{13}+18 q^{12}+17 q^{11}+12 q^{10}-15 q^9-73 q^8-119 q^7-58 q^6+82 q^5+209 q^4+324 q^3+253 q^2-134 q-630-856 q^{-1} -523 q^{-2} +198 q^{-3} +1300 q^{-4} +1951 q^{-5} +1294 q^{-6} -609 q^{-7} -2681 q^{-8} -3456 q^{-9} -2456 q^{-10} +1087 q^{-11} +4970 q^{-12} +6313 q^{-13} +3413 q^{-14} -2521 q^{-15} -7902 q^{-16} -9913 q^{-17} -4600 q^{-18} +5066 q^{-19} +13055 q^{-20} +13151 q^{-21} +4322 q^{-22} -8584 q^{-23} -18998 q^{-24} -16515 q^{-25} -2300 q^{-26} +15477 q^{-27} +24091 q^{-28} +17301 q^{-29} -1647 q^{-30} -23264 q^{-31} -28939 q^{-32} -15195 q^{-33} +10547 q^{-34} +29799 q^{-35} +29961 q^{-36} +9877 q^{-37} -20547 q^{-38} -35841 q^{-39} -26993 q^{-40} +1815 q^{-41} +28935 q^{-42} +37062 q^{-43} +19851 q^{-44} -14457 q^{-45} -36622 q^{-46} -33554 q^{-47} -5576 q^{-48} +24928 q^{-49} +38699 q^{-50} +25382 q^{-51} -9057 q^{-52} -34412 q^{-53} -35586 q^{-54} -9898 q^{-55} +20901 q^{-56} +37694 q^{-57} +27646 q^{-58} -5207 q^{-59} -31543 q^{-60} -35634 q^{-61} -12640 q^{-62} +17120 q^{-63} +35796 q^{-64} +28945 q^{-65} -1280 q^{-66} -27854 q^{-67} -35025 q^{-68} -15869 q^{-69} +11907 q^{-70} +32552 q^{-71} +30215 q^{-72} +4490 q^{-73} -21635 q^{-74} -32940 q^{-75} -20007 q^{-76} +3792 q^{-77} +26096 q^{-78} +30067 q^{-79} +11841 q^{-80} -11680 q^{-81} -27089 q^{-82} -22755 q^{-83} -6197 q^{-84} +15291 q^{-85} +25517 q^{-86} +17400 q^{-87} +248 q^{-88} -16295 q^{-89} -20316 q^{-90} -13648 q^{-91} +2574 q^{-92} +15408 q^{-93} +16740 q^{-94} +8868 q^{-95} -3732 q^{-96} -11789 q^{-97} -13892 q^{-98} -6123 q^{-99} +3758 q^{-100} +9611 q^{-101} +9724 q^{-102} +4246 q^{-103} -2066 q^{-104} -7726 q^{-105} -6979 q^{-106} -2972 q^{-107} +1709 q^{-108} +4799 q^{-109} +4796 q^{-110} +2753 q^{-111} -1394 q^{-112} -3073 q^{-113} -3146 q^{-114} -1634 q^{-115} +344 q^{-116} +1802 q^{-117} +2310 q^{-118} +876 q^{-119} -93 q^{-120} -990 q^{-121} -1126 q^{-122} -794 q^{-123} -39 q^{-124} +677 q^{-125} +499 q^{-126} +424 q^{-127} +43 q^{-128} -185 q^{-129} -363 q^{-130} -227 q^{-131} +50 q^{-132} +44 q^{-133} +140 q^{-134} +88 q^{-135} +46 q^{-136} -66 q^{-137} -63 q^{-138} -4 q^{-139} -23 q^{-140} +15 q^{-141} +15 q^{-142} +26 q^{-143} -9 q^{-144} -11 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} </math> | |
coloured_jones_6 = <math>q^{20}-q^{19}-q^{18}-4 q^{15}-6 q^{14}+12 q^{13}+18 q^{12}+17 q^{11}+12 q^{10}-15 q^9-73 q^8-119 q^7-58 q^6+82 q^5+209 q^4+324 q^3+253 q^2-134 q-630-856 q^{-1} -523 q^{-2} +198 q^{-3} +1300 q^{-4} +1951 q^{-5} +1294 q^{-6} -609 q^{-7} -2681 q^{-8} -3456 q^{-9} -2456 q^{-10} +1087 q^{-11} +4970 q^{-12} +6313 q^{-13} +3413 q^{-14} -2521 q^{-15} -7902 q^{-16} -9913 q^{-17} -4600 q^{-18} +5066 q^{-19} +13055 q^{-20} +13151 q^{-21} +4322 q^{-22} -8584 q^{-23} -18998 q^{-24} -16515 q^{-25} -2300 q^{-26} +15477 q^{-27} +24091 q^{-28} +17301 q^{-29} -1647 q^{-30} -23264 q^{-31} -28939 q^{-32} -15195 q^{-33} +10547 q^{-34} +29799 q^{-35} +29961 q^{-36} +9877 q^{-37} -20547 q^{-38} -35841 q^{-39} -26993 q^{-40} +1815 q^{-41} +28935 q^{-42} +37062 q^{-43} +19851 q^{-44} -14457 q^{-45} -36622 q^{-46} -33554 q^{-47} -5576 q^{-48} +24928 q^{-49} +38699 q^{-50} +25382 q^{-51} -9057 q^{-52} -34412 q^{-53} -35586 q^{-54} -9898 q^{-55} +20901 q^{-56} +37694 q^{-57} +27646 q^{-58} -5207 q^{-59} -31543 q^{-60} -35634 q^{-61} -12640 q^{-62} +17120 q^{-63} +35796 q^{-64} +28945 q^{-65} -1280 q^{-66} -27854 q^{-67} -35025 q^{-68} -15869 q^{-69} +11907 q^{-70} +32552 q^{-71} +30215 q^{-72} +4490 q^{-73} -21635 q^{-74} -32940 q^{-75} -20007 q^{-76} +3792 q^{-77} +26096 q^{-78} +30067 q^{-79} +11841 q^{-80} -11680 q^{-81} -27089 q^{-82} -22755 q^{-83} -6197 q^{-84} +15291 q^{-85} +25517 q^{-86} +17400 q^{-87} +248 q^{-88} -16295 q^{-89} -20316 q^{-90} -13648 q^{-91} +2574 q^{-92} +15408 q^{-93} +16740 q^{-94} +8868 q^{-95} -3732 q^{-96} -11789 q^{-97} -13892 q^{-98} -6123 q^{-99} +3758 q^{-100} +9611 q^{-101} +9724 q^{-102} +4246 q^{-103} -2066 q^{-104} -7726 q^{-105} -6979 q^{-106} -2972 q^{-107} +1709 q^{-108} +4799 q^{-109} +4796 q^{-110} +2753 q^{-111} -1394 q^{-112} -3073 q^{-113} -3146 q^{-114} -1634 q^{-115} +344 q^{-116} +1802 q^{-117} +2310 q^{-118} +876 q^{-119} -93 q^{-120} -990 q^{-121} -1126 q^{-122} -794 q^{-123} -39 q^{-124} +677 q^{-125} +499 q^{-126} +424 q^{-127} +43 q^{-128} -185 q^{-129} -363 q^{-130} -227 q^{-131} +50 q^{-132} +44 q^{-133} +140 q^{-134} +88 q^{-135} +46 q^{-136} -66 q^{-137} -63 q^{-138} -4 q^{-139} -23 q^{-140} +15 q^{-141} +15 q^{-142} +26 q^{-143} -9 q^{-144} -11 q^{-145} +5 q^{-146} -7 q^{-147} +5 q^{-150} -3 q^{-152} + q^{-153} </math> | |
||
coloured_jones_7 = |
coloured_jones_7 = | |
||
computer_talk = |
computer_talk = |
||
<table> |
<table> |
||
Line 50: | Line 50: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of August 29, 2005, 15: |
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[1, 6, 2, 7], X[3, 9, 4, 8], X[18, 11, 19, 12], X[20, 13, 1, 14], |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 159]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[1, 6, 2, 7], X[3, 9, 4, 8], X[18, 11, 19, 12], X[20, 13, 1, 14], |
|||
X[15, 2, 16, 3], X[17, 5, 18, 4], X[12, 19, 13, 20], X[5, 10, 6, 11], |
X[15, 2, 16, 3], X[17, 5, 18, 4], X[12, 19, 13, 20], X[5, 10, 6, 11], |
||
X[7, 15, 8, 14], X[9, 16, 10, 17]]</nowiki></ |
X[7, 15, 8, 14], X[9, 16, 10, 17]]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 159]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, |
|||
-3, 7, -4]</nowiki></ |
-3, 7, -4]</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 159]]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[6, 8, 10, 14, 16, -18, -20, 2, 4, -12]</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 159]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
|||
< |
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 10, 14, 16, -18, -20, 2, 4, -12]</nowiki></code></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>3</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 159]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_159_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 159]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -2, 1, -2, 1, 1, -2, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 159]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 159]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_159_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 159]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
SymmetryType, UnknottingNumber, ThreeGenus, |
||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
||
}</nowiki></ |
}</nowiki></code></td></tr> |
||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 1, 3, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 159]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 4 9 2 3 |
|||
-11 + t - -- + - + 9 t - 4 t + t |
-11 + t - -- + - + 9 t - 4 t + t |
||
2 t |
2 t |
||
t</nowiki></ |
t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 159]][z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
1 + 2 z + 2 z + z</nowiki></pre></td></tr> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 159]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 159]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 |
|||
1 + 2 z + 2 z + z</nowiki></code></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 159]][q]</nowiki></pre></td></tr> |
|||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -8 3 5 6 7 7 5 4 |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 159]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 159]], KnotSignature[Knot[10, 159]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{39, -2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 159]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 3 5 6 7 7 5 4 |
|||
-1 - q + -- - -- + -- - -- + -- - -- + - |
-1 - q + -- - -- + -- - -- + -- - -- + - |
||
7 6 5 4 3 2 q |
7 6 5 4 3 2 q |
||
q q q q q q</nowiki></ |
q q q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 159]}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 159]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 159]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -24 -22 -20 -16 2 -12 -10 2 2 2 |
|||
-1 - q + q - q + q - --- + q - q + -- + -- + -- |
-1 - q + q - q + q - --- + q - q + -- + -- + -- |
||
14 8 6 2 |
14 8 6 2 |
||
q q q q</nowiki></ |
q q q q</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 159]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 159]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 2 2 4 2 6 2 2 4 4 4 6 4 |
|||
a + a - a - a z + 5 a z - 2 a z - a z + 4 a z - a z + |
a + a - a - a z + 5 a z - 2 a z - a z + 4 a z - a z + |
||
4 6 |
4 6 |
||
a z</nowiki></ |
a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 159]][a, z]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 3 5 7 9 2 2 4 2 6 2 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 159]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 3 5 7 9 2 2 4 2 6 2 |
|||
-a + a + a + a z + a z + a z + a z - 2 a z - 4 a z + a z + |
-a + a + a + a z + a z + a z + a z - 2 a z - 4 a z + a z + |
||
Line 116: | Line 202: | ||
3 7 5 7 7 7 4 8 6 8 |
3 7 5 7 7 7 4 8 6 8 |
||
a z + 4 a z + 3 a z + a z + a z</nowiki></ |
a z + 4 a z + 3 a z + a z + a z</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 159]], Vassiliev[3][Knot[10, 159]]}</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, -3}</nowiki></pre></td></tr> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 159]], Vassiliev[3][Knot[10, 159]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{2, -3}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 159]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>2 3 1 2 1 3 2 3 3 |
|||
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
-- + - + ------ + ------ + ------ + ------ + ------ + ------ + ----- + |
||
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
3 q 17 7 15 6 13 6 13 5 11 5 11 4 9 4 |
||
Line 128: | Line 224: | ||
----- + ----- + ----- + ----- + ---- + ---- + q t |
----- + ----- + ----- + ----- + ---- + ---- + q t |
||
9 3 7 3 7 2 5 2 5 3 |
9 3 7 3 7 2 5 2 5 3 |
||
q t q t q t q t q t q t</nowiki></ |
q t q t q t q t q t q t</nowiki></code></td></tr> |
||
</table> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 159], 2][q]</nowiki></pre></td></tr> |
|||
<table><tr align=left> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -23 3 10 11 9 28 13 27 42 6 43 |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 159], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -23 3 10 11 9 28 13 27 42 6 43 |
|||
-3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
-3 + q - --- + --- - --- - --- + --- - --- - --- + --- - --- - --- + |
||
22 20 19 18 17 16 15 14 13 12 |
22 20 19 18 17 16 15 14 13 12 |
||
Line 138: | Line 239: | ||
--- + --- - -- + -- + -- - -- + -- + -- - -- + -- + - |
--- + --- - -- + -- + -- - -- + -- + -- - -- + -- + - |
||
11 10 9 8 7 6 5 4 3 2 q |
11 10 9 8 7 6 5 4 3 2 q |
||
q q q q q q q q q q</nowiki></ |
q q q q q q q q q q</nowiki></code></td></tr> |
||
</table> }} |
Latest revision as of 17:02, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 159's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1627 X3948 X18,11,19,12 X20,13,1,14 X15,2,16,3 X17,5,18,4 X12,19,13,20 X5,10,6,11 X7,15,8,14 X9,16,10,17 |
Gauss code | -1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, -3, 7, -4 |
Dowker-Thistlethwaite code | 6 8 10 14 16 -18 -20 2 4 -12 |
Conway Notation | [-30:2:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{1, 6}, {2, 8}, {4, 1}, {7, 5}, {6, 9}, {8, 3}, {5, 10}, {9, 2}, {10, 4}, {3, 7}] |
[edit Notes on presentations of 10 159]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 159"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3948 X18,11,19,12 X20,13,1,14 X15,2,16,3 X17,5,18,4 X12,19,13,20 X5,10,6,11 X7,15,8,14 X9,16,10,17 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 5, -2, 6, -8, 1, -9, 2, -10, 8, 3, -7, 4, 9, -5, 10, -6, -3, 7, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 10 14 16 -18 -20 2 4 -12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[-30:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{1, 6}, {2, 8}, {4, 1}, {7, 5}, {6, 9}, {8, 3}, {5, 10}, {9, 2}, {10, 4}, {3, 7}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 159"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 39, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 159"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (2, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of 10 159. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|