10 48: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_48}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 48 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-9,2,-10,3,-1,9,-2,5,-7,6,-8,10,-3,4,-5,7,-6,8,-4/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-5</td ><td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>-1</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>1</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>1</td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>5</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td> </td><td> </td><td bgcolor=yellow>3</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
<tr align=center><td>-5</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-7</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>3</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-9</td><td bgcolor=yellow> </td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{15}-2 q^{14}+q^{13}+4 q^{12}-9 q^{11}+2 q^{10}+14 q^9-19 q^8-3 q^7+31 q^6-27 q^5-14 q^4+48 q^3-30 q^2-24 q+56-26 q^{-1} -28 q^{-2} +47 q^{-3} -15 q^{-4} -25 q^{-5} +30 q^{-6} -5 q^{-7} -16 q^{-8} +14 q^{-9} - q^{-10} -7 q^{-11} +5 q^{-12} -2 q^{-14} + q^{-15} </math> | |
|||
coloured_jones_3 = <math>-q^{30}+2 q^{29}-q^{28}-q^{27}+5 q^{25}-3 q^{24}-7 q^{23}+3 q^{22}+17 q^{21}-7 q^{20}-24 q^{19}-q^{18}+39 q^{17}+9 q^{16}-49 q^{15}-27 q^{14}+55 q^{13}+51 q^{12}-57 q^{11}-75 q^{10}+48 q^9+104 q^8-42 q^7-120 q^6+24 q^5+143 q^4-19 q^3-143 q^2-4 q+159+4 q^{-1} -140 q^{-2} -28 q^{-3} +138 q^{-4} +30 q^{-5} -110 q^{-6} -47 q^{-7} +92 q^{-8} +46 q^{-9} -62 q^{-10} -48 q^{-11} +41 q^{-12} +40 q^{-13} -23 q^{-14} -29 q^{-15} +10 q^{-16} +21 q^{-17} -8 q^{-18} -10 q^{-19} +3 q^{-20} +8 q^{-21} -5 q^{-22} -3 q^{-23} +2 q^{-24} +4 q^{-25} -3 q^{-26} - q^{-27} +2 q^{-29} - q^{-30} </math> | |
|||
coloured_jones_4 = <math>q^{50}-2 q^{49}+q^{48}+q^{47}-3 q^{46}+4 q^{45}-5 q^{44}+5 q^{43}+3 q^{42}-14 q^{41}+9 q^{40}-9 q^{39}+19 q^{38}+17 q^{37}-40 q^{36}-28 q^{34}+49 q^{33}+64 q^{32}-55 q^{31}-19 q^{30}-99 q^{29}+49 q^{28}+136 q^{27}-10 q^{26}+15 q^{25}-204 q^{24}-36 q^{23}+149 q^{22}+72 q^{21}+167 q^{20}-252 q^{19}-182 q^{18}+42 q^{17}+106 q^{16}+394 q^{15}-191 q^{14}-294 q^{13}-138 q^{12}+51 q^{11}+594 q^{10}-72 q^9-328 q^8-292 q^7-46 q^6+706 q^5+32 q^4-306 q^3-380 q^2-133 q+733+105 q^{-1} -250 q^{-2} -409 q^{-3} -210 q^{-4} +668 q^{-5} +168 q^{-6} -140 q^{-7} -383 q^{-8} -294 q^{-9} +509 q^{-10} +199 q^{-11} +16 q^{-12} -274 q^{-13} -342 q^{-14} +281 q^{-15} +151 q^{-16} +143 q^{-17} -107 q^{-18} -294 q^{-19} +88 q^{-20} +40 q^{-21} +157 q^{-22} +24 q^{-23} -169 q^{-24} +9 q^{-25} -45 q^{-26} +87 q^{-27} +56 q^{-28} -61 q^{-29} +14 q^{-30} -56 q^{-31} +23 q^{-32} +30 q^{-33} -17 q^{-34} +25 q^{-35} -29 q^{-36} + q^{-37} +6 q^{-38} -9 q^{-39} +18 q^{-40} -8 q^{-41} -6 q^{-44} +6 q^{-45} - q^{-46} + q^{-47} -2 q^{-49} + q^{-50} </math> | |
|||
coloured_jones_5 = <math>-q^{75}+2 q^{74}-q^{73}-q^{72}+3 q^{71}-q^{70}-4 q^{69}+3 q^{68}-q^{66}+8 q^{65}+q^{64}-16 q^{63}-5 q^{62}+2 q^{61}+9 q^{60}+27 q^{59}+14 q^{58}-31 q^{57}-48 q^{56}-26 q^{55}+16 q^{54}+84 q^{53}+82 q^{52}-10 q^{51}-104 q^{50}-138 q^{49}-60 q^{48}+113 q^{47}+206 q^{46}+135 q^{45}-49 q^{44}-229 q^{43}-261 q^{42}-52 q^{41}+198 q^{40}+318 q^{39}+221 q^{38}-53 q^{37}-331 q^{36}-384 q^{35}-161 q^{34}+203 q^{33}+483 q^{32}+458 q^{31}+49 q^{30}-493 q^{29}-742 q^{28}-403 q^{27}+350 q^{26}+967 q^{25}+845 q^{24}-101 q^{23}-1111 q^{22}-1248 q^{21}-262 q^{20}+1125 q^{19}+1648 q^{18}+635 q^{17}-1069 q^{16}-1908 q^{15}-1027 q^{14}+925 q^{13}+2144 q^{12}+1318 q^{11}-783 q^{10}-2209 q^9-1598 q^8+609 q^7+2320 q^6+1733 q^5-500 q^4-2251 q^3-1896 q^2+339 q+2311+1934 q^{-1} -256 q^{-2} -2161 q^{-3} -2044 q^{-4} +66 q^{-5} +2132 q^{-6} +2059 q^{-7} +85 q^{-8} -1889 q^{-9} -2106 q^{-10} -357 q^{-11} +1685 q^{-12} +2046 q^{-13} +588 q^{-14} -1283 q^{-15} -1944 q^{-16} -854 q^{-17} +897 q^{-18} +1695 q^{-19} +1017 q^{-20} -413 q^{-21} -1380 q^{-22} -1103 q^{-23} +29 q^{-24} +972 q^{-25} +1035 q^{-26} +298 q^{-27} -567 q^{-28} -874 q^{-29} -472 q^{-30} +223 q^{-31} +627 q^{-32} +507 q^{-33} +42 q^{-34} -377 q^{-35} -458 q^{-36} -171 q^{-37} +173 q^{-38} +320 q^{-39} +223 q^{-40} -18 q^{-41} -212 q^{-42} -193 q^{-43} -47 q^{-44} +90 q^{-45} +148 q^{-46} +82 q^{-47} -38 q^{-48} -84 q^{-49} -70 q^{-50} -14 q^{-51} +51 q^{-52} +55 q^{-53} +13 q^{-54} -11 q^{-55} -30 q^{-56} -30 q^{-57} +6 q^{-58} +20 q^{-59} +9 q^{-60} +8 q^{-61} -2 q^{-62} -16 q^{-63} -4 q^{-64} +5 q^{-65} +4 q^{-67} +4 q^{-68} -4 q^{-69} -2 q^{-70} + q^{-71} - q^{-72} +2 q^{-74} - q^{-75} </math> | |
|||
coloured_jones_6 = <math>q^{105}-2 q^{104}+q^{103}+q^{102}-3 q^{101}+q^{100}+q^{99}+6 q^{98}-8 q^{97}-2 q^{96}+6 q^{95}-9 q^{94}+4 q^{93}+8 q^{92}+19 q^{91}-20 q^{90}-20 q^{89}+6 q^{88}-23 q^{87}+15 q^{86}+36 q^{85}+66 q^{84}-27 q^{83}-68 q^{82}-30 q^{81}-90 q^{80}+7 q^{79}+96 q^{78}+211 q^{77}+57 q^{76}-93 q^{75}-111 q^{74}-295 q^{73}-156 q^{72}+68 q^{71}+432 q^{70}+330 q^{69}+112 q^{68}-19 q^{67}-526 q^{66}-548 q^{65}-330 q^{64}+372 q^{63}+516 q^{62}+536 q^{61}+565 q^{60}-241 q^{59}-667 q^{58}-914 q^{57}-271 q^{56}-99 q^{55}+397 q^{54}+1178 q^{53}+767 q^{52}+320 q^{51}-591 q^{50}-698 q^{49}-1517 q^{48}-1177 q^{47}+444 q^{46}+1337 q^{45}+2125 q^{44}+1459 q^{43}+644 q^{42}-2229 q^{41}-3568 q^{40}-2296 q^{39}-140 q^{38}+2988 q^{37}+4297 q^{36}+4125 q^{35}-705 q^{34}-4873 q^{33}-5794 q^{32}-3712 q^{31}+1584 q^{30}+6012 q^{29}+8225 q^{28}+2753 q^{27}-4030 q^{26}-8164 q^{25}-7695 q^{24}-1494 q^{23}+5789 q^{22}+11139 q^{21}+6402 q^{20}-1798 q^{19}-8756 q^{18}-10454 q^{17}-4578 q^{16}+4401 q^{15}+12348 q^{14}+8854 q^{13}+378 q^{12}-8265 q^{11}-11641 q^{10}-6577 q^9+3009 q^8+12455 q^7+9958 q^6+1757 q^5-7588 q^4-11869 q^3-7547 q^2+2073 q+12175+10367 q^{-1} +2594 q^{-2} -6974 q^{-3} -11777 q^{-4} -8178 q^{-5} +1201 q^{-6} +11594 q^{-7} +10656 q^{-8} +3630 q^{-9} -5906 q^{-10} -11344 q^{-11} -8975 q^{-12} -363 q^{-13} +10104 q^{-14} +10636 q^{-15} +5239 q^{-16} -3632 q^{-17} -9816 q^{-18} -9540 q^{-19} -2813 q^{-20} +7021 q^{-21} +9374 q^{-22} +6703 q^{-23} -234 q^{-24} -6551 q^{-25} -8716 q^{-26} -5052 q^{-27} +2778 q^{-28} +6262 q^{-29} +6590 q^{-30} +2769 q^{-31} -2274 q^{-32} -5926 q^{-33} -5445 q^{-34} -767 q^{-35} +2267 q^{-36} +4414 q^{-37} +3659 q^{-38} +1004 q^{-39} -2351 q^{-40} -3716 q^{-41} -2006 q^{-42} -585 q^{-43} +1556 q^{-44} +2461 q^{-45} +1976 q^{-46} +63 q^{-47} -1421 q^{-48} -1309 q^{-49} -1346 q^{-50} -209 q^{-51} +819 q^{-52} +1324 q^{-53} +697 q^{-54} -91 q^{-55} -273 q^{-56} -865 q^{-57} -575 q^{-58} -43 q^{-59} +495 q^{-60} +430 q^{-61} +198 q^{-62} +189 q^{-63} -318 q^{-64} -349 q^{-65} -197 q^{-66} +106 q^{-67} +136 q^{-68} +110 q^{-69} +218 q^{-70} -73 q^{-71} -137 q^{-72} -131 q^{-73} +7 q^{-74} +16 q^{-75} +24 q^{-76} +138 q^{-77} - q^{-78} -36 q^{-79} -65 q^{-80} -7 q^{-81} -15 q^{-82} -11 q^{-83} +68 q^{-84} +11 q^{-85} + q^{-86} -24 q^{-87} -2 q^{-88} -13 q^{-89} -16 q^{-90} +24 q^{-91} +5 q^{-92} +6 q^{-93} -6 q^{-94} +2 q^{-95} -4 q^{-96} -8 q^{-97} +6 q^{-98} +2 q^{-100} - q^{-101} + q^{-102} -2 q^{-104} + q^{-105} </math> | |
|||
coloured_jones_7 = <math>-q^{140}+2 q^{139}-q^{138}-q^{137}+3 q^{136}-q^{135}-q^{134}-3 q^{133}-q^{132}+10 q^{131}-3 q^{130}-5 q^{129}+5 q^{128}-5 q^{127}-2 q^{126}-7 q^{125}-2 q^{124}+33 q^{123}+6 q^{122}-15 q^{121}-6 q^{120}-30 q^{119}-8 q^{118}-14 q^{117}+2 q^{116}+93 q^{115}+57 q^{114}-38 q^{112}-127 q^{111}-83 q^{110}-65 q^{109}-7 q^{108}+220 q^{107}+237 q^{106}+167 q^{105}+13 q^{104}-302 q^{103}-337 q^{102}-363 q^{101}-225 q^{100}+291 q^{99}+559 q^{98}+685 q^{97}+501 q^{96}-178 q^{95}-589 q^{94}-977 q^{93}-1017 q^{92}-230 q^{91}+444 q^{90}+1187 q^{89}+1506 q^{88}+813 q^{87}+97 q^{86}-988 q^{85}-1804 q^{84}-1439 q^{83}-921 q^{82}+249 q^{81}+1515 q^{80}+1716 q^{79}+1815 q^{78}+921 q^{77}-482 q^{76}-1102 q^{75}-2133 q^{74}-2218 q^{73}-1363 q^{72}-599 q^{71}+1375 q^{70}+2838 q^{69}+3296 q^{68}+3448 q^{67}+1124 q^{66}-1978 q^{65}-4695 q^{64}-6860 q^{63}-5112 q^{62}-943 q^{61}+4263 q^{60}+9705 q^{59}+10291 q^{58}+6218 q^{57}-1433 q^{56}-11012 q^{55}-15404 q^{54}-13089 q^{53}-4249 q^{52}+9591 q^{51}+19270 q^{50}+20798 q^{49}+12334 q^{48}-5240 q^{47}-20874 q^{46}-27868 q^{45}-21771 q^{44}-1941 q^{43}+19532 q^{42}+33263 q^{41}+31503 q^{40}+11041 q^{39}-15545 q^{38}-36280 q^{37}-40119 q^{36}-20861 q^{35}+9319 q^{34}+36757 q^{33}+47008 q^{32}+30303 q^{31}-2078 q^{30}-35127 q^{29}-51586 q^{28}-38441 q^{27}-5362 q^{26}+32074 q^{25}+54193 q^{24}+44726 q^{23}+11958 q^{22}-28330 q^{21}-54978 q^{20}-49189 q^{19}-17473 q^{18}+24703 q^{17}+54826 q^{16}+51883 q^{15}+21366 q^{14}-21480 q^{13}-53812 q^{12}-53399 q^{11}-24259 q^{10}+19016 q^9+52980 q^8+54019 q^7+25786 q^6-17175 q^5-51798 q^4-54289 q^3-27166 q^2+15814 q+51271+54457 q^{-1} +27899 q^{-2} -14603 q^{-3} -50289 q^{-4} -54737 q^{-5} -29332 q^{-6} +13058 q^{-7} +49578 q^{-8} +55178 q^{-9} +30840 q^{-10} -10821 q^{-11} -47832 q^{-12} -55467 q^{-13} -33341 q^{-14} +7352 q^{-15} +45276 q^{-16} +55326 q^{-17} +36057 q^{-18} -2630 q^{-19} -40824 q^{-20} -54014 q^{-21} -39011 q^{-22} -3416 q^{-23} +34612 q^{-24} +51036 q^{-25} +41114 q^{-26} +10162 q^{-27} -26394 q^{-28} -45825 q^{-29} -41831 q^{-30} -16736 q^{-31} +16973 q^{-32} +38327 q^{-33} +40149 q^{-34} +22061 q^{-35} -7075 q^{-36} -29046 q^{-37} -36015 q^{-38} -25090 q^{-39} -1708 q^{-40} +18893 q^{-41} +29386 q^{-42} +25272 q^{-43} +8488 q^{-44} -9186 q^{-45} -21429 q^{-46} -22652 q^{-47} -12248 q^{-48} +1252 q^{-49} +13144 q^{-50} +17871 q^{-51} +13049 q^{-52} +4179 q^{-53} -5889 q^{-54} -12248 q^{-55} -11427 q^{-56} -6715 q^{-57} +624 q^{-58} +6782 q^{-59} +8299 q^{-60} +6977 q^{-61} +2498 q^{-62} -2556 q^{-63} -4992 q^{-64} -5650 q^{-65} -3506 q^{-66} -121 q^{-67} +2082 q^{-68} +3731 q^{-69} +3284 q^{-70} +1360 q^{-71} -242 q^{-72} -1989 q^{-73} -2326 q^{-74} -1505 q^{-75} -724 q^{-76} +703 q^{-77} +1368 q^{-78} +1181 q^{-79} +932 q^{-80} -39 q^{-81} -613 q^{-82} -694 q^{-83} -809 q^{-84} -200 q^{-85} +209 q^{-86} +302 q^{-87} +536 q^{-88} +224 q^{-89} -5 q^{-90} -111 q^{-91} -356 q^{-92} -122 q^{-93} +10 q^{-94} -8 q^{-95} +178 q^{-96} +80 q^{-97} +29 q^{-98} +8 q^{-99} -164 q^{-100} -30 q^{-101} +34 q^{-102} -12 q^{-103} +79 q^{-104} +20 q^{-105} +16 q^{-106} +16 q^{-107} -99 q^{-108} -33 q^{-109} +15 q^{-110} -4 q^{-111} +47 q^{-112} +12 q^{-113} +18 q^{-114} +27 q^{-115} -46 q^{-116} -26 q^{-117} -5 q^{-118} -10 q^{-119} +18 q^{-120} +4 q^{-121} +10 q^{-122} +21 q^{-123} -12 q^{-124} -9 q^{-125} -4 q^{-126} -8 q^{-127} +5 q^{-128} - q^{-129} +2 q^{-130} +8 q^{-131} -2 q^{-132} -2 q^{-133} -2 q^{-135} + q^{-136} - q^{-137} +2 q^{-139} - q^{-140} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 48]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[8, 4, 9, 3], X[14, 6, 15, 5], X[20, 15, 1, 16], |
|||
X[16, 9, 17, 10], X[18, 11, 19, 12], X[10, 17, 11, 18], |
|||
X[12, 19, 13, 20], X[2, 8, 3, 7], X[4, 14, 5, 13]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 48]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -9, 2, -10, 3, -1, 9, -2, 5, -7, 6, -8, 10, -3, 4, -5, 7, |
|||
-6, 8, -4]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 48]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 8, 14, 2, 16, 18, 4, 20, 10, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 48]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {-1, -1, -1, -1, 2, 2, -1, 2, 2, 2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 48]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 48]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_48_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 48]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Reversible, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 48]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 3 6 9 2 3 4 |
|||
11 + t - -- + -- - - - 9 t + 6 t - 3 t + t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 48]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 + 4 z + 8 z + 5 z + z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 48]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 48]], KnotSignature[Knot[10, 48]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{49, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 48]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -5 2 4 6 7 2 3 4 5 |
|||
9 - q + -- - -- + -- - - - 7 q + 6 q - 4 q + 2 q - q |
|||
4 3 2 q |
|||
q q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 48]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 48]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -14 2 4 2 10 14 |
|||
1 - q - --- + -- + 4 q - 2 q - q |
|||
10 2 |
|||
q q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 48]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 |
|||
4 2 2 8 z 2 2 4 5 z 2 4 |
|||
9 - -- - 4 a + 20 z - ---- - 8 a z + 18 z - ---- - 5 a z + |
|||
2 2 2 |
|||
a a a |
|||
6 |
|||
6 z 2 6 8 |
|||
7 z - -- - a z + z |
|||
2 |
|||
a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 48]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 |
|||
4 2 z 3 z 9 z 5 2 z 13 z |
|||
9 + -- + 4 a + -- - --- - --- - 7 a z + 2 a z - 27 z + -- - ----- - |
|||
2 5 3 a 4 2 |
|||
a a a a a |
|||
3 3 3 |
|||
2 2 4 2 3 z 8 z 21 z 3 3 3 |
|||
11 a z + 2 a z - ---- + ---- + ----- + 12 a z - a z - |
|||
5 3 a |
|||
a a |
|||
4 4 5 5 |
|||
5 3 4 5 z 18 z 2 4 4 4 z 9 z |
|||
3 a z + 37 z - ---- + ----- + 9 a z - 5 a z + -- - ---- - |
|||
4 2 5 3 |
|||
a a a a |
|||
5 6 6 |
|||
11 z 5 3 5 5 5 6 2 z 11 z 2 6 |
|||
----- - 5 a z - 3 a z + a z - 20 z + ---- - ----- - 5 a z + |
|||
a 4 2 |
|||
a a |
|||
7 7 8 9 |
|||
4 6 3 z z 3 7 8 3 z 2 8 z 9 |
|||
2 a z + ---- + -- + 2 a z + 5 z + ---- + 2 a z + -- + a z |
|||
3 a 2 a |
|||
a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 48]], Vassiliev[3][Knot[10, 48]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{4, 0}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 48]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>5 1 1 1 3 1 3 3 |
|||
- + 5 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
|||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
|||
q t q t q t q t q t q t q t |
|||
4 3 3 3 2 5 2 5 3 7 3 |
|||
---- + --- + 3 q t + 4 q t + 3 q t + 3 q t + q t + 3 q t + |
|||
3 q t |
|||
q t |
|||
7 4 9 4 11 5 |
|||
q t + q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 48], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -15 2 5 7 -10 14 16 5 30 25 15 47 |
|||
56 + q - --- + --- - --- - q + -- - -- - -- + -- - -- - -- + -- - |
|||
14 12 11 9 8 7 6 5 4 3 |
|||
q q q q q q q q q q |
|||
28 26 2 3 4 5 6 7 |
|||
-- - -- - 24 q - 30 q + 48 q - 14 q - 27 q + 31 q - 3 q - |
|||
2 q |
|||
q |
|||
8 9 10 11 12 13 14 15 |
|||
19 q + 14 q + 2 q - 9 q + 4 q + q - 2 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 16:58, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 48's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X8493 X14,6,15,5 X20,15,1,16 X16,9,17,10 X18,11,19,12 X10,17,11,18 X12,19,13,20 X2837 X4,14,5,13 |
Gauss code | 1, -9, 2, -10, 3, -1, 9, -2, 5, -7, 6, -8, 10, -3, 4, -5, 7, -6, 8, -4 |
Dowker-Thistlethwaite code | 6 8 14 2 16 18 4 20 10 12 |
Conway Notation | [41,3,2] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{5, 13}, {2, 12}, {13, 11}, {12, 6}, {1, 4}, {3, 5}, {4, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 3}, {11, 2}, {10, 1}] |
[edit Notes on presentations of 10 48]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 48"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X8493 X14,6,15,5 X20,15,1,16 X16,9,17,10 X18,11,19,12 X10,17,11,18 X12,19,13,20 X2837 X4,14,5,13 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -9, 2, -10, 3, -1, 9, -2, 5, -7, 6, -8, 10, -3, 4, -5, 7, -6, 8, -4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 14 2 16 18 4 20 10 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[41,3,2] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{5, 13}, {2, 12}, {13, 11}, {12, 6}, {1, 4}, {3, 5}, {4, 7}, {6, 8}, {7, 9}, {8, 10}, {9, 3}, {11, 2}, {10, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 48"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 49, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 48"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 48. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|