L9a14: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
DrorsRobot (talk | contribs) No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 16: | Line 16: | ||
k = 14 | |
k = 14 | |
||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-9:8,-1,3,-6,4,-7,5,-2,9,-3,6,-4,7,-5/goTop.html | |
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-8,2,-9:8,-1,3,-6,4,-7,5,-2,9,-3,6,-4,7,-5/goTop.html | |
||
braid_table = <table cellspacing=0 cellpadding=0 border=0 style="white-space: pre"> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
</table> | |
|||
khovanov_table = <table border=1> |
khovanov_table = <table border=1> |
||
<tr align=center> |
<tr align=center> |
||
| Line 42: | Line 47: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2>Loading KnotTheory` (version of |
<tr valign=top><td colspan=2>Loading KnotTheory` (version of September 3, 2005, 2:11:43)...</td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 14]]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[9, Alternating, 14]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>9</nowiki></pre></td></tr> |
||
| Line 57: | Line 62: | ||
-5}]</nowiki></pre></td></tr> |
-5}]</nowiki></pre></td></tr> |
||
<tr |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[9, Alternating, 14]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[3, {1, -2, 1, 1, 1, 1, 1, -2, 1}]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Link[9, Alternating, 14]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:L9a14_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[7]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>KnotSignature[Link[9, Alternating, 14]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[9, Alternating, 14]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3/2 5/2 7/2 9/2 11/2 13/2 |
|||
-Sqrt[q] + q - 3 q + 2 q - 4 q + 4 q - 3 q + |
-Sqrt[q] + q - 3 q + 2 q - 4 q + 4 q - 3 q + |
||
15/2 17/2 19/2 |
15/2 17/2 19/2 |
||
3 q - 2 q + q</nowiki></pre></td></tr> |
3 q - 2 q + q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[9, Alternating, 14]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10 12 14 16 18 20 |
||
q + q + 2 q + 3 q + 3 q + 4 q + q + q - 2 q - 2 q - |
q + q + 2 q + 3 q + 3 q + 4 q + q + q - 2 q - 2 q - |
||
22 24 28 |
22 24 28 |
||
q - q - q</nowiki></pre></td></tr> |
q - q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Link[9, Alternating, 14]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 3 3 5 |
||
2 5 3 4 z 11 z 7 z 4 z 12 z 5 z z |
2 5 3 4 z 11 z 7 z 4 z 12 z 5 z z |
||
---- - ---- + ---- + --- - ---- + --- + ---- - ----- + ---- + -- - |
---- - ---- + ---- + --- - ---- + --- + ---- - ----- + ---- + -- - |
||
| Line 84: | Line 91: | ||
5 3 5 |
5 3 5 |
||
a a a</nowiki></pre></td></tr> |
a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Link[9, Alternating, 14]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
||
-10 5 5 2 5 3 7 z 17 z 10 z z 3 z |
-10 5 5 2 5 3 7 z 17 z 10 z z 3 z |
||
-a + -- + -- - ---- - ---- - ---- + --- + ---- + ---- - --- + ---- - |
-a + -- + -- - ---- - ---- - ---- + --- + ---- + ---- - --- + ---- - |
||
| Line 108: | Line 115: | ||
5 3 6 4 |
5 3 6 4 |
||
a a a a</nowiki></pre></td></tr> |
a a a a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Link[9, Alternating, 14]][q, t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 4 |
||
4 6 -2 q 6 8 8 2 10 2 10 3 |
4 6 -2 q 6 8 8 2 10 2 10 3 |
||
3 q + 2 q + t + -- + q t + q t + 3 q t + q t + q t + |
3 q + 2 q + t + -- + q t + q t + 3 q t + q t + q t + |
||
Latest revision as of 02:37, 3 September 2005
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a14 is [math]\displaystyle{ 9^2_{13} }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a14's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,8,15,7 X16,10,17,9 X18,12,5,11 X8,16,9,15 X10,18,11,17 X2536 X4,14,1,13 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -6, 4, -7, 5, -2, 9, -3, 6, -4, 7, -5} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{(u-1) (v-1) \left(v^2-v+1\right) \left(v^2+v+1\right)}{\sqrt{u} v^{5/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -4 q^{9/2}+2 q^{7/2}-3 q^{5/2}+q^{3/2}+q^{19/2}-2 q^{17/2}+3 q^{15/2}-3 q^{13/2}+4 q^{11/2}-\sqrt{q} }[/math] (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ z^5 a^{-7} +4 z^3 a^{-7} +4 z a^{-7} +2 a^{-7} z^{-1} -z^7 a^{-5} -6 z^5 a^{-5} -12 z^3 a^{-5} -11 z a^{-5} -5 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +7 z a^{-3} +3 a^{-3} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -4 z^7 a^{-5} -3 z^7 a^{-7} +4 z^6 a^{-4} +z^6 a^{-6} -3 z^6 a^{-8} +6 z^5 a^{-3} +20 z^5 a^{-5} +11 z^5 a^{-7} -3 z^5 a^{-9} -z^4 a^{-4} +8 z^4 a^{-6} +6 z^4 a^{-8} -3 z^4 a^{-10} -12 z^3 a^{-3} -30 z^3 a^{-5} -12 z^3 a^{-7} +4 z^3 a^{-9} -2 z^3 a^{-11} -8 z^2 a^{-4} -12 z^2 a^{-6} +3 z^2 a^{-10} -z^2 a^{-12} +10 z a^{-3} +17 z a^{-5} +7 z a^{-7} +5 a^{-4} +5 a^{-6} - a^{-10} -3 a^{-3} z^{-1} -5 a^{-5} z^{-1} -2 a^{-7} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



