L9a14
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L9a14 is Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 9^2_{13}} in the Rolfsen table of links. |
Link Presentations
[edit Notes on L9a14's Link Presentations]
| Planar diagram presentation | X6172 X12,4,13,3 X14,8,15,7 X16,10,17,9 X18,12,5,11 X8,16,9,15 X10,18,11,17 X2536 X4,14,1,13 |
| Gauss code | {1, -8, 2, -9}, {8, -1, 3, -6, 4, -7, 5, -2, 9, -3, 6, -4, 7, -5} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle u} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(u-1) (v-1) \left(v^2-v+1\right) \left(v^2+v+1\right)}{\sqrt{u} v^{5/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -4 q^{9/2}+2 q^{7/2}-3 q^{5/2}+q^{3/2}+q^{19/2}-2 q^{17/2}+3 q^{15/2}-3 q^{13/2}+4 q^{11/2}-\sqrt{q}} (db) |
| Signature | 5 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^5 a^{-7} +4 z^3 a^{-7} +4 z a^{-7} +2 a^{-7} z^{-1} -z^7 a^{-5} -6 z^5 a^{-5} -12 z^3 a^{-5} -11 z a^{-5} -5 a^{-5} z^{-1} +z^5 a^{-3} +5 z^3 a^{-3} +7 z a^{-3} +3 a^{-3} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8 a^{-4} -z^8 a^{-6} -z^7 a^{-3} -4 z^7 a^{-5} -3 z^7 a^{-7} +4 z^6 a^{-4} +z^6 a^{-6} -3 z^6 a^{-8} +6 z^5 a^{-3} +20 z^5 a^{-5} +11 z^5 a^{-7} -3 z^5 a^{-9} -z^4 a^{-4} +8 z^4 a^{-6} +6 z^4 a^{-8} -3 z^4 a^{-10} -12 z^3 a^{-3} -30 z^3 a^{-5} -12 z^3 a^{-7} +4 z^3 a^{-9} -2 z^3 a^{-11} -8 z^2 a^{-4} -12 z^2 a^{-6} +3 z^2 a^{-10} -z^2 a^{-12} +10 z a^{-3} +17 z a^{-5} +7 z a^{-7} +5 a^{-4} +5 a^{-6} - a^{-10} -3 a^{-3} z^{-1} -5 a^{-5} z^{-1} -2 a^{-7} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



