10 106: Difference between revisions
(Resetting knot page to basic template.) |
No edit summary |
||
(6 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
<!-- WARNING! WARNING! WARNING! |
|||
{{Template:Basic Knot Invariants|name=10_106}} |
|||
<!-- This page was generated from the splice base [[Rolfsen_Splice_Base]]. Please do not edit! |
|||
<!-- You probably want to edit the template referred to immediately below. (See [[Category:Knot Page Template]].) |
|||
<!-- This page itself was created by running [[Media:KnotPageSpliceRobot.nb]] on [[Rolfsen_Splice_Base]]. --> |
|||
<!-- --> |
|||
<!-- --> |
|||
{{Rolfsen Knot Page| |
|||
n = 10 | |
|||
k = 106 | |
|||
KnotilusURL = http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-4,3,-6,5,-1,2,-9,7,-3,6,-10,8,-5,4,-2,9,-7,10,-8/goTop.html | |
|||
braid_table = <table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart3.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart4.gif]]</td></tr> |
|||
</table> | |
|||
braid_crossings = 10 | |
|||
braid_width = 3 | |
|||
braid_index = 3 | |
|||
same_alexander = | |
|||
same_jones = [[10_59]], | |
|||
khovanov_table = <table border=1> |
|||
<tr align=center> |
|||
<td width=13.3333%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=6.66667%>-4</td ><td width=6.66667%>-3</td ><td width=6.66667%>-2</td ><td width=6.66667%>-1</td ><td width=6.66667%>0</td ><td width=6.66667%>1</td ><td width=6.66667%>2</td ><td width=6.66667%>3</td ><td width=6.66667%>4</td ><td width=6.66667%>5</td ><td width=6.66667%>6</td ><td width=13.3333%>χ</td></tr> |
|||
<tr align=center><td>15</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>13</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow> </td><td>-2</td></tr> |
|||
<tr align=center><td>11</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>1</td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>9</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>-4</td></tr> |
|||
<tr align=center><td>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>3</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>6</td><td bgcolor=yellow>6</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>1</td><td> </td><td> </td><td> </td><td bgcolor=yellow>4</td><td bgcolor=yellow>7</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-1</td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>5</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-3</td></tr> |
|||
<tr align=center><td>-3</td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>3</td></tr> |
|||
<tr align=center><td>-5</td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-2</td></tr> |
|||
<tr align=center><td>-7</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table> | |
|||
coloured_jones_2 = <math>q^{20}-3 q^{19}+2 q^{18}+6 q^{17}-16 q^{16}+11 q^{15}+20 q^{14}-50 q^{13}+26 q^{12}+53 q^{11}-97 q^{10}+29 q^9+92 q^8-124 q^7+15 q^6+115 q^5-115 q^4-9 q^3+111 q^2-80 q-28+81 q^{-1} -36 q^{-2} -30 q^{-3} +40 q^{-4} -6 q^{-5} -16 q^{-6} +10 q^{-7} + q^{-8} -3 q^{-9} + q^{-10} </math> | |
|||
coloured_jones_3 = <math>q^{39}-3 q^{38}+2 q^{37}+2 q^{36}-8 q^{34}+5 q^{33}+12 q^{32}-14 q^{31}-18 q^{30}+33 q^{29}+32 q^{28}-68 q^{27}-65 q^{26}+121 q^{25}+125 q^{24}-182 q^{23}-212 q^{22}+223 q^{21}+338 q^{20}-253 q^{19}-459 q^{18}+241 q^{17}+574 q^{16}-199 q^{15}-661 q^{14}+137 q^{13}+702 q^{12}-52 q^{11}-720 q^{10}-22 q^9+685 q^8+116 q^7-641 q^6-186 q^5+555 q^4+266 q^3-466 q^2-307 q+343+336 q^{-1} -225 q^{-2} -323 q^{-3} +110 q^{-4} +279 q^{-5} -21 q^{-6} -208 q^{-7} -38 q^{-8} +137 q^{-9} +54 q^{-10} -70 q^{-11} -50 q^{-12} +29 q^{-13} +32 q^{-14} -8 q^{-15} -16 q^{-16} +2 q^{-17} +5 q^{-18} + q^{-19} -3 q^{-20} + q^{-21} </math> | |
|||
coloured_jones_4 = <math>q^{64}-3 q^{63}+2 q^{62}+2 q^{61}-4 q^{60}+8 q^{59}-14 q^{58}+7 q^{57}+7 q^{56}-18 q^{55}+36 q^{54}-33 q^{53}+15 q^{52}-6 q^{51}-80 q^{50}+116 q^{49}+11 q^{48}+79 q^{47}-103 q^{46}-358 q^{45}+180 q^{44}+263 q^{43}+483 q^{42}-183 q^{41}-1125 q^{40}-181 q^{39}+609 q^{38}+1586 q^{37}+272 q^{36}-2190 q^{35}-1359 q^{34}+403 q^{33}+3071 q^{32}+1639 q^{31}-2740 q^{30}-2922 q^{29}-714 q^{28}+4003 q^{27}+3345 q^{26}-2323 q^{25}-3903 q^{24}-2190 q^{23}+3918 q^{22}+4475 q^{21}-1347 q^{20}-3934 q^{19}-3291 q^{18}+3153 q^{17}+4755 q^{16}-323 q^{15}-3315 q^{14}-3872 q^{13}+2088 q^{12}+4448 q^{11}+658 q^{10}-2326 q^9-4070 q^8+790 q^7+3674 q^6+1580 q^5-991 q^4-3785 q^3-586 q^2+2356 q+2064+475 q^{-1} -2753 q^{-2} -1476 q^{-3} +719 q^{-4} +1676 q^{-5} +1428 q^{-6} -1226 q^{-7} -1376 q^{-8} -465 q^{-9} +661 q^{-10} +1358 q^{-11} -55 q^{-12} -596 q^{-13} -671 q^{-14} -118 q^{-15} +662 q^{-16} +256 q^{-17} + q^{-18} -306 q^{-19} -247 q^{-20} +144 q^{-21} +106 q^{-22} +104 q^{-23} -45 q^{-24} -99 q^{-25} +9 q^{-26} +4 q^{-27} +35 q^{-28} +4 q^{-29} -19 q^{-30} +2 q^{-31} -3 q^{-32} +5 q^{-33} + q^{-34} -3 q^{-35} + q^{-36} </math> | |
|||
coloured_jones_5 = <math>q^{95}-3 q^{94}+2 q^{93}+2 q^{92}-4 q^{91}+4 q^{90}+2 q^{89}-12 q^{88}+2 q^{87}+13 q^{86}-5 q^{85}+10 q^{84}+6 q^{83}-40 q^{82}-24 q^{81}+19 q^{80}+42 q^{79}+72 q^{78}+40 q^{77}-104 q^{76}-211 q^{75}-125 q^{74}+139 q^{73}+437 q^{72}+431 q^{71}-85 q^{70}-832 q^{69}-1079 q^{68}-226 q^{67}+1318 q^{66}+2217 q^{65}+1148 q^{64}-1665 q^{63}-3972 q^{62}-3051 q^{61}+1477 q^{60}+6166 q^{59}+6197 q^{58}-120 q^{57}-8339 q^{56}-10609 q^{55}-2917 q^{54}+9759 q^{53}+15893 q^{52}+7759 q^{51}-9682 q^{50}-21086 q^{49}-14202 q^{48}+7554 q^{47}+25440 q^{46}+21340 q^{45}-3601 q^{44}-27875 q^{43}-28195 q^{42}-1847 q^{41}+28336 q^{40}+33794 q^{39}+7703 q^{38}-26867 q^{37}-37498 q^{36}-13227 q^{35}+24043 q^{34}+39330 q^{33}+17757 q^{32}-20646 q^{31}-39478 q^{30}-20998 q^{29}+17017 q^{28}+38498 q^{27}+23267 q^{26}-13687 q^{25}-36800 q^{24}-24629 q^{23}+10333 q^{22}+34685 q^{21}+25730 q^{20}-7101 q^{19}-32163 q^{18}-26480 q^{17}+3400 q^{16}+29154 q^{15}+27188 q^{14}+508 q^{13}-25352 q^{12}-27304 q^{11}-4965 q^{10}+20669 q^9+26781 q^8+9237 q^7-15056 q^6-24862 q^5-13129 q^4+8761 q^3+21675 q^2+15680 q-2452-16914 q^{-1} -16563 q^{-2} -3184 q^{-3} +11293 q^{-4} +15406 q^{-5} +7248 q^{-6} -5437 q^{-7} -12480 q^{-8} -9270 q^{-9} +370 q^{-10} +8417 q^{-11} +9184 q^{-12} +3172 q^{-13} -4234 q^{-14} -7409 q^{-15} -4791 q^{-16} +728 q^{-17} +4808 q^{-18} +4783 q^{-19} +1400 q^{-20} -2263 q^{-21} -3604 q^{-22} -2223 q^{-23} +372 q^{-24} +2148 q^{-25} +2022 q^{-26} +577 q^{-27} -879 q^{-28} -1364 q^{-29} -806 q^{-30} +120 q^{-31} +695 q^{-32} +637 q^{-33} +173 q^{-34} -258 q^{-35} -349 q^{-36} -190 q^{-37} +23 q^{-38} +161 q^{-39} +129 q^{-40} +13 q^{-41} -51 q^{-42} -44 q^{-43} -30 q^{-44} +8 q^{-45} +30 q^{-46} +6 q^{-47} -7 q^{-48} - q^{-49} -3 q^{-50} -3 q^{-51} +5 q^{-52} + q^{-53} -3 q^{-54} + q^{-55} </math> | |
|||
coloured_jones_6 = <math>q^{132}-3 q^{131}+2 q^{130}+2 q^{129}-4 q^{128}+4 q^{127}-2 q^{126}+4 q^{125}-17 q^{124}+8 q^{123}+26 q^{122}-21 q^{121}+8 q^{120}-9 q^{119}-2 q^{118}-61 q^{117}+23 q^{116}+122 q^{115}-17 q^{114}+19 q^{113}-50 q^{112}-95 q^{111}-256 q^{110}+27 q^{109}+433 q^{108}+220 q^{107}+248 q^{106}-123 q^{105}-592 q^{104}-1177 q^{103}-432 q^{102}+1132 q^{101}+1522 q^{100}+1917 q^{99}+591 q^{98}-1967 q^{97}-4763 q^{96}-3902 q^{95}+814 q^{94}+5087 q^{93}+8980 q^{92}+6888 q^{91}-1774 q^{90}-13525 q^{89}-17618 q^{88}-8813 q^{87}+6863 q^{86}+25722 q^{85}+30532 q^{84}+13335 q^{83}-20950 q^{82}-47657 q^{81}-44951 q^{80}-12841 q^{79}+41837 q^{78}+78397 q^{77}+65878 q^{76}-143 q^{75}-77961 q^{74}-113168 q^{73}-80373 q^{72}+22920 q^{71}+126524 q^{70}+156965 q^{69}+76607 q^{68}-67014 q^{67}-179901 q^{66}-189105 q^{65}-57259 q^{64}+127552 q^{63}+242596 q^{62}+193161 q^{61}+7610 q^{60}-194346 q^{59}-286019 q^{58}-173037 q^{57}+64689 q^{56}+271422 q^{55}+291214 q^{54}+112745 q^{53}-146450 q^{52}-323146 q^{51}-265509 q^{50}-24320 q^{49}+240285 q^{48}+330107 q^{47}+193561 q^{46}-75539 q^{45}-304347 q^{44}-303644 q^{43}-91916 q^{42}+187362 q^{41}+320128 q^{40}+229429 q^{39}-20236 q^{38}-265211 q^{37}-302667 q^{36}-126959 q^{35}+142238 q^{34}+293319 q^{33}+238656 q^{32}+16089 q^{31}-227455 q^{30}-290420 q^{29}-148963 q^{28}+102736 q^{27}+264708 q^{26}+244394 q^{25}+52604 q^{24}-185128 q^{23}-275844 q^{22}-176062 q^{21}+51001 q^{20}+225079 q^{19}+249440 q^{18}+102255 q^{17}-121471 q^{16}-245647 q^{15}-204506 q^{14}-21066 q^{13}+157340 q^{12}+235038 q^{11}+154435 q^{10}-32147 q^9-180593 q^8-209015 q^7-96083 q^6+59611 q^5+178671 q^4+177059 q^3+59118 q^2-80763 q-163856-135504 q^{-1} -38505 q^{-2} +82927 q^{-3} +142545 q^{-4} +108419 q^{-5} +18206 q^{-6} -75642 q^{-7} -111777 q^{-8} -89378 q^{-9} -10346 q^{-10} +63403 q^{-11} +90754 q^{-12} +66637 q^{-13} +7775 q^{-14} -44472 q^{-15} -73168 q^{-16} -51748 q^{-17} -7668 q^{-18} +33412 q^{-19} +51715 q^{-20} +39966 q^{-21} +11380 q^{-22} -24266 q^{-23} -36779 q^{-24} -30212 q^{-25} -9285 q^{-26} +12786 q^{-27} +25058 q^{-28} +23915 q^{-29} +7218 q^{-30} -6745 q^{-31} -16143 q^{-32} -15386 q^{-33} -7671 q^{-34} +2983 q^{-35} +10759 q^{-36} +9374 q^{-37} +5627 q^{-38} -934 q^{-39} -5222 q^{-40} -6566 q^{-41} -3788 q^{-42} +531 q^{-43} +2354 q^{-44} +3554 q^{-45} +2270 q^{-46} +479 q^{-47} -1519 q^{-48} -1815 q^{-49} -978 q^{-50} -454 q^{-51} +561 q^{-52} +805 q^{-53} +722 q^{-54} +45 q^{-55} -238 q^{-56} -225 q^{-57} -319 q^{-58} -74 q^{-59} +66 q^{-60} +185 q^{-61} +47 q^{-62} +6 q^{-63} +13 q^{-64} -59 q^{-65} -30 q^{-66} -11 q^{-67} +33 q^{-68} + q^{-69} -5 q^{-70} +11 q^{-71} -6 q^{-72} -3 q^{-73} -3 q^{-74} +5 q^{-75} + q^{-76} -3 q^{-77} + q^{-78} </math> | |
|||
coloured_jones_7 = <math>q^{175}-3 q^{174}+2 q^{173}+2 q^{172}-4 q^{171}+4 q^{170}-2 q^{169}-q^{167}-11 q^{166}+21 q^{165}+10 q^{164}-23 q^{163}+3 q^{162}-12 q^{161}+q^{160}-q^{159}-33 q^{158}+92 q^{157}+62 q^{156}-62 q^{155}-45 q^{154}-107 q^{153}-25 q^{152}+7 q^{151}-23 q^{150}+323 q^{149}+293 q^{148}-57 q^{147}-245 q^{146}-606 q^{145}-414 q^{144}-55 q^{143}+252 q^{142}+1291 q^{141}+1389 q^{140}+472 q^{139}-824 q^{138}-2773 q^{137}-3006 q^{136}-1609 q^{135}+963 q^{134}+5268 q^{133}+7195 q^{132}+5297 q^{131}-389 q^{130}-9640 q^{129}-15347 q^{128}-13838 q^{127}-3792 q^{126}+14530 q^{125}+29634 q^{124}+32602 q^{123}+17333 q^{122}-16781 q^{121}-51260 q^{120}-67228 q^{119}-49181 q^{118}+7271 q^{117}+76035 q^{116}+122556 q^{115}+112686 q^{114}+29786 q^{113}-92961 q^{112}-197895 q^{111}-219105 q^{110}-115150 q^{109}+79590 q^{108}+280008 q^{107}+372645 q^{106}+270836 q^{105}-5088 q^{104}-342023 q^{103}-562357 q^{102}-507743 q^{101}-161749 q^{100}+343645 q^{99}+756244 q^{98}+817587 q^{97}+441871 q^{96}-242462 q^{95}-906664 q^{94}-1167237 q^{93}-830937 q^{92}+9456 q^{91}+960681 q^{90}+1500630 q^{89}+1294634 q^{88}+359492 q^{87}-877312 q^{86}-1756429 q^{85}-1775160 q^{84}-832447 q^{83}+645896 q^{82}+1882426 q^{81}+2201356 q^{80}+1352236 q^{79}-286538 q^{78}-1856384 q^{77}-2516424 q^{76}-1848435 q^{75}-146835 q^{74}+1689580 q^{73}+2685590 q^{72}+2258827 q^{71}+591376 q^{70}-1422084 q^{69}-2711259 q^{68}-2546245 q^{67}-986729 q^{66}+1110528 q^{65}+2621929 q^{64}+2702078 q^{63}+1294080 q^{62}-806612 q^{61}-2462126 q^{60}-2746890 q^{59}-1501612 q^{58}+548598 q^{57}+2278314 q^{56}+2714539 q^{55}+1619337 q^{54}-351029 q^{53}-2103041 q^{52}-2643587 q^{51}-1675195 q^{50}+209368 q^{49}+1955137 q^{48}+2564661 q^{47}+1698635 q^{46}-104858 q^{45}-1833381 q^{44}-2495996 q^{43}-1718909 q^{42}+12519 q^{41}+1727454 q^{40}+2442790 q^{39}+1753220 q^{38}+91642 q^{37}-1616620 q^{36}-2398596 q^{35}-1811411 q^{34}-226337 q^{33}+1481447 q^{32}+2348252 q^{31}+1889193 q^{30}+402489 q^{29}-1300813 q^{28}-2272141 q^{27}-1975843 q^{26}-619843 q^{25}+1062582 q^{24}+2147322 q^{23}+2047854 q^{22}+868410 q^{21}-759370 q^{20}-1953966 q^{19}-2079769 q^{18}-1124778 q^{17}+400243 q^{16}+1677613 q^{15}+2039434 q^{14}+1355917 q^{13}-4130 q^{12}-1316759 q^{11}-1903592 q^{10}-1522563 q^9-390664 q^8+887810 q^7+1656665 q^6+1585901 q^5+739118 q^4-424382 q^3-1307002 q^2-1520985 q-990806-21214 q^{-1} +883728 q^{-2} +1321628 q^{-3} +1107960 q^{-4} +393151 q^{-5} -438644 q^{-6} -1012324 q^{-7} -1074371 q^{-8} -640987 q^{-9} +34253 q^{-10} +641466 q^{-11} +904069 q^{-12} +738301 q^{-13} +272259 q^{-14} -273304 q^{-15} -641639 q^{-16} -690381 q^{-17} -444320 q^{-18} -29284 q^{-19} +349424 q^{-20} +533251 q^{-21} +478052 q^{-22} +224363 q^{-23} -90214 q^{-24} -325142 q^{-25} -402334 q^{-26} -299918 q^{-27} -89784 q^{-28} +125444 q^{-29} +265771 q^{-30} +276254 q^{-31} +175514 q^{-32} +21845 q^{-33} -122869 q^{-34} -194403 q^{-35} -178849 q^{-36} -98091 q^{-37} +12256 q^{-38} +97985 q^{-39} +132398 q^{-40} +112121 q^{-41} +48502 q^{-42} -21262 q^{-43} -70946 q^{-44} -86703 q^{-45} -63937 q^{-46} -22386 q^{-47} +20093 q^{-48} +48852 q^{-49} +51533 q^{-50} +35257 q^{-51} +8795 q^{-52} -17075 q^{-53} -29534 q^{-54} -29129 q^{-55} -18079 q^{-56} -1470 q^{-57} +10979 q^{-58} +17180 q^{-59} +15587 q^{-60} +7483 q^{-61} -510 q^{-62} -6742 q^{-63} -9129 q^{-64} -6931 q^{-65} -3291 q^{-66} +1092 q^{-67} +4038 q^{-68} +4047 q^{-69} +2938 q^{-70} +955 q^{-71} -932 q^{-72} -1647 q^{-73} -1896 q^{-74} -1124 q^{-75} +9 q^{-76} +486 q^{-77} +759 q^{-78} +594 q^{-79} +254 q^{-80} +57 q^{-81} -279 q^{-82} -342 q^{-83} -133 q^{-84} -39 q^{-85} +72 q^{-86} +72 q^{-87} +42 q^{-88} +80 q^{-89} -3 q^{-90} -50 q^{-91} -25 q^{-92} -12 q^{-93} +14 q^{-94} +4 q^{-95} -10 q^{-96} +13 q^{-97} +6 q^{-98} -6 q^{-99} -3 q^{-100} -3 q^{-101} +5 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math> | |
|||
computer_talk = |
|||
<table> |
|||
<tr valign=top> |
|||
<td><pre style="color: blue; border: 0px; padding: 0em">In[1]:= </pre></td> |
|||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
|||
</tr> |
|||
<tr valign=top><td colspan=2><nowiki>Loading KnotTheory` (version of August 29, 2005, 15:33:11)...</nowiki></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[Knot[10, 106]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[2]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>PD[X[6, 2, 7, 1], X[16, 8, 17, 7], X[10, 3, 11, 4], X[2, 15, 3, 16], |
|||
X[14, 5, 15, 6], X[4, 11, 5, 12], X[18, 10, 19, 9], X[20, 14, 1, 13], |
|||
X[8, 18, 9, 17], X[12, 20, 13, 19]]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[Knot[10, 106]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[3]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>GaussCode[1, -4, 3, -6, 5, -1, 2, -9, 7, -3, 6, -10, 8, -5, 4, -2, 9, |
|||
-7, 10, -8]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[Knot[10, 106]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[4]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>DTCode[6, 10, 14, 16, 18, 4, 20, 2, 8, 12]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>br = BR[Knot[10, 106]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[5]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BR[3, {1, 1, 1, -2, 1, -2, 1, 1, -2, -2}]</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{First[br], Crossings[br]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[6]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{3, 10}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>BraidIndex[Knot[10, 106]]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[7]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>3</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Show[DrawMorseLink[Knot[10, 106]]]</nowiki></code></td></tr> |
|||
<tr align=left><td></td><td>[[Image:10_106_ML.gif]]</td></tr><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[8]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>-Graphics-</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> (#[Knot[10, 106]]&) /@ { |
|||
SymmetryType, UnknottingNumber, ThreeGenus, |
|||
BridgeIndex, SuperBridgeIndex, NakanishiIndex |
|||
}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[9]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Chiral, 2, 4, 3, NotAvailable, 1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>alex = Alexander[Knot[10, 106]][t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[10]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -4 4 9 15 2 3 4 |
|||
-17 - t + -- - -- + -- + 15 t - 9 t + 4 t - t |
|||
3 2 t |
|||
t t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Conway[Knot[10, 106]][z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[11]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 4 6 8 |
|||
1 - z - 5 z - 4 z - z</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[12]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 106]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{KnotDet[Knot[10, 106]], KnotSignature[Knot[10, 106]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[13]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{75, 2}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Jones[Knot[10, 106]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[14]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -3 3 6 2 3 4 5 6 7 |
|||
-9 + q - -- + - + 12 q - 12 q + 12 q - 10 q + 6 q - 3 q + q |
|||
2 q |
|||
q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[15]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Knot[10, 59], Knot[10, 106]}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>A2Invariant[Knot[10, 106]][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[16]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -8 -6 2 -2 2 4 6 8 10 12 14 |
|||
q - q + -- - q + 2 q - 2 q + 4 q - 2 q + q - q - 2 q + |
|||
4 |
|||
q |
|||
16 18 20 |
|||
2 q - q + q</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>HOMFLYPT[Knot[10, 106]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[17]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 4 4 6 |
|||
-4 2 2 5 z 11 z 4 4 z 13 z 6 z |
|||
2 + a - -- + 5 z + ---- - ----- + 4 z + ---- - ----- + z + -- - |
|||
2 4 2 4 2 4 |
|||
a a a a a a |
|||
6 8 |
|||
6 z z |
|||
---- - -- |
|||
2 2 |
|||
a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kauffman[Knot[10, 106]][a, z]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[18]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 2 2 2 |
|||
-4 2 z z z 2 z 2 z 2 z 3 z |
|||
2 + a + -- + -- + -- - -- - --- - a z - 5 z - -- + ---- - ---- - |
|||
2 7 5 3 a 8 6 4 |
|||
a a a a a a a |
|||
2 3 3 3 3 4 |
|||
13 z 2 2 3 z 3 z 8 z 9 z 3 4 z |
|||
----- + 2 a z - ---- + ---- + ---- + ---- + 7 a z + 9 z + -- - |
|||
2 7 5 3 a 8 |
|||
a a a a a |
|||
4 4 4 5 5 5 5 |
|||
5 z 4 z 22 z 2 4 3 z 7 z 13 z 12 z |
|||
---- + ---- + ----- - 3 a z + ---- - ---- - ----- - ----- - |
|||
6 4 2 7 5 3 a |
|||
a a a a a a |
|||
6 6 6 7 7 7 |
|||
5 6 5 z 6 z 23 z 2 6 6 z 4 z z |
|||
9 a z - 11 z + ---- - ---- - ----- + a z + ---- + ---- + -- + |
|||
6 4 2 5 3 a |
|||
a a a a a |
|||
8 8 9 9 |
|||
7 8 5 z 9 z 2 z 2 z |
|||
3 a z + 4 z + ---- + ---- + ---- + ---- |
|||
4 2 3 a |
|||
a a a</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{Vassiliev[2][Knot[10, 106]], Vassiliev[3][Knot[10, 106]]}</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[19]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>{-1, -1}</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>Kh[Knot[10, 106]][q, t]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[20]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> 3 1 2 1 4 2 5 4 q |
|||
7 q + 6 q + ----- + ----- + ----- + ----- + ---- + --- + --- + |
|||
7 4 5 3 3 3 3 2 2 q t t |
|||
q t q t q t q t q t |
|||
3 5 5 2 7 2 7 3 9 3 9 4 |
|||
6 q t + 6 q t + 6 q t + 6 q t + 4 q t + 6 q t + 2 q t + |
|||
11 4 11 5 13 5 15 6 |
|||
4 q t + q t + 2 q t + q t</nowiki></code></td></tr> |
|||
</table> |
|||
<table><tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">In[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: red; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki>ColouredJones[Knot[10, 106], 2][q]</nowiki></code></td></tr> |
|||
<tr align=left> |
|||
<td width=70px><code style="color: blue; border: 0px; padding: 0em">Out[21]:=</code></td> |
|||
<td><code style="white-space: pre; color: black; border: 0px; padding: 0em; background-color: rgb(255,255,255);"><nowiki> -10 3 -8 10 16 6 40 30 36 81 |
|||
-28 + q - -- + q + -- - -- - -- + -- - -- - -- + -- - 80 q + |
|||
9 7 6 5 4 3 2 q |
|||
q q q q q q q |
|||
2 3 4 5 6 7 8 9 |
|||
111 q - 9 q - 115 q + 115 q + 15 q - 124 q + 92 q + 29 q - |
|||
10 11 12 13 14 15 16 |
|||
97 q + 53 q + 26 q - 50 q + 20 q + 11 q - 16 q + |
|||
17 18 19 20 |
|||
6 q + 2 q - 3 q + q</nowiki></code></td></tr> |
|||
</table> }} |
Latest revision as of 17:03, 1 September 2005
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 10 106's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X6271 X16,8,17,7 X10,3,11,4 X2,15,3,16 X14,5,15,6 X4,11,5,12 X18,10,19,9 X20,14,1,13 X8,18,9,17 X12,20,13,19 |
Gauss code | 1, -4, 3, -6, 5, -1, 2, -9, 7, -3, 6, -10, 8, -5, 4, -2, 9, -7, 10, -8 |
Dowker-Thistlethwaite code | 6 10 14 16 18 4 20 2 8 12 |
Conway Notation | [30:2:20] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 10, width is 3, Braid index is 3 |
[{9, 12}, {11, 4}, {12, 6}, {5, 3}, {4, 2}, {3, 7}, {6, 10}, {8, 11}, {7, 1}, {2, 9}, {1, 8}, {10, 5}] |
[edit Notes on presentations of 10 106]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 106"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X6271 X16,8,17,7 X10,3,11,4 X2,15,3,16 X14,5,15,6 X4,11,5,12 X18,10,19,9 X20,14,1,13 X8,18,9,17 X12,20,13,19 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -4, 3, -6, 5, -1, 2, -9, 7, -3, 6, -10, 8, -5, 4, -2, 9, -7, 10, -8 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 10 14 16 18 4 20 2 8 12 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[30:2:20] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 10, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{9, 12}, {11, 4}, {12, 6}, {5, 3}, {4, 2}, {3, 7}, {6, 10}, {8, 11}, {7, 1}, {2, 9}, {1, 8}, {10, 5}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 106"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 75, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {10_59,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["10 106"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{10_59,} |
Vassiliev invariants
V2 and V3: | (-1, -1) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of 10 106. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|