Article:Math.GT/0505662/unidentified-references: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 10: | Line 10: | ||
B.L.~Feigin, {\em Lie algebras ${\rm gl}(\lambda)$ and cohomology of a Lie algebra of differential operators,} Russian Math.~Surveys {\bf 43} (1988), no. 2, 169. |
B.L.~Feigin, {\em Lie algebras ${\rm gl}(\lambda)$ and cohomology of a Lie algebra of differential operators,} Russian Math.~Surveys {\bf 43} (1988), no. 2, 169. |
||
T.~Graber, E.~Zaslow, {\em Open-String Gromov-Witten Invariants: Calculations and a Mirror ``Theorem",} in Orbifolds in mathematics and physics (Madison, WI, 2001), 107--121, Contemp.~Math., {\bf 310}, Amer.~Math.~Soc., 2002. hep-th/0109075. |
|||
S.~Gukov, A.~Schwarz, C.~Vafa, {\em Khovanov-Rozansky homology and topological strings,} hep-th/0412243. |
|||
J.~Hoste, M.~Thistlethwaite. \emph{Knotscape,} \texttt{www.math.utk.edu/$\sim$morwen/knotscape.html} |
J.~Hoste, M.~Thistlethwaite. \emph{Knotscape,} \texttt{www.math.utk.edu/$\sim$morwen/knotscape.html} |
||
Line 26: | Line 24: | ||
J.~M.~F.~Labastida, M.~Marino, C.~Vafa, {\em Knots, links and branes at large N,} JHEP {\bf 0011}, 007 (2000), hep-th/0010102. |
|||
J.~Li, Y.S.~Song, {\em Open String Instantons and Relative Stable Morphisms,} Adv.~Theor.~Math.~Phys. {\bf 5} (2002) 67, hep-th/0103100. |
|||
Line 36: | Line 32: | ||
H.~Morton, {\em Seifert circles and knot polynomials}, Math. Proc. Camb. Phil. Soc. {\bf 99} (1986), 107-110. |
H.~Morton, {\em Seifert circles and knot polynomials}, Math. Proc. Camb. Phil. Soc. {\bf 99} (1986), 107-110. |
||
H.~Ooguri, C.~Vafa, {\em Knot Invariants and Topological Strings,} Nucl.Phys. {\bf B577} (2000) 419, hep-th/9912123. |
|||
Latest revision as of 23:46, 16 September 2006
D.~Bar-Natan, {\em 36 Torus Knots}, \texttt{http://katlas.math.toronto.edu/wiki/36\_Torus\_Knots} D.~Bar-Natan. {\em The Knot Atlas,} \texttt{www.math.toronto.edu/$\sim$drorbn/KAtlas/} B.L.~Feigin, {\em Lie algebras ${\rm gl}(\lambda)$ and cohomology of a Lie algebra of differential operators,} Russian Math.~Surveys {\bf 43} (1988), no. 2, 169. J.~Hoste, M.~Thistlethwaite. \emph{Knotscape,} \texttt{www.math.utk.edu/$\sim$morwen/knotscape.html} V.~Jones, {\em Hecke algebra representations of braid groups and link polynomials,} Ann. of Math. {\bf 126} no.2 (1987) 335. H.~Morton, {\em Seifert circles and knot polynomials}, Math. Proc. Camb. Phil. Soc. {\bf 99} (1986), 107-110. D.~Rolfsen. {\em Knots and Links}, Publish or Perish, 1976. L.~Rudolph. {\em An obstruction to sliceness via contact geometry and ``classical'' gauge theory,} Invent.~Math. {\bf 119} (1995), 155-163. L.~Rudolph. {\em Positive links are strongly quasipositive,} Proceedings of the Kirbyfest, Geom.~Top.~Monographs 2, Coventry, 1999. A.~Shumakovitch. \newblock {\em KhoHo: a program for computing Khovanov homology}, \texttt{www.geometrie.ch/KhoHo/}