Article:Math.GT/0505662/unidentified-references: Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
 
No edit summary
 
Line 10: Line 10:
B.L.~Feigin, {\em Lie algebras ${\rm gl}(\lambda)$ and cohomology of a Lie algebra of differential operators,} Russian Math.~Surveys {\bf 43} (1988), no. 2, 169.
B.L.~Feigin, {\em Lie algebras ${\rm gl}(\lambda)$ and cohomology of a Lie algebra of differential operators,} Russian Math.~Surveys {\bf 43} (1988), no. 2, 169.


T.~Graber, E.~Zaslow, {\em Open-String Gromov-Witten Invariants: Calculations and a Mirror ``Theorem",} in Orbifolds in mathematics and physics (Madison, WI, 2001), 107--121, Contemp.~Math., {\bf 310}, Amer.~Math.~Soc., 2002. hep-th/0109075.




S.~Gukov, A.~Schwarz, C.~Vafa, {\em Khovanov-Rozansky homology and topological strings,} hep-th/0412243.


J.~Hoste, M.~Thistlethwaite. \emph{Knotscape,} \texttt{www.math.utk.edu/$\sim$morwen/knotscape.html}
J.~Hoste, M.~Thistlethwaite. \emph{Knotscape,} \texttt{www.math.utk.edu/$\sim$morwen/knotscape.html}
Line 26: Line 24:




J.~M.~F.~Labastida, M.~Marino, C.~Vafa, {\em Knots, links and branes at large N,} JHEP {\bf 0011}, 007 (2000), hep-th/0010102.






J.~Li, Y.S.~Song, {\em Open String Instantons and Relative Stable Morphisms,} Adv.~Theor.~Math.~Phys. {\bf 5} (2002) 67, hep-th/0103100.




Line 36: Line 32:
H.~Morton, {\em Seifert circles and knot polynomials}, Math. Proc. Camb. Phil. Soc. {\bf 99} (1986), 107-110.
H.~Morton, {\em Seifert circles and knot polynomials}, Math. Proc. Camb. Phil. Soc. {\bf 99} (1986), 107-110.


H.~Ooguri, C.~Vafa, {\em Knot Invariants and Topological Strings,} Nucl.Phys. {\bf B577} (2000) 419, hep-th/9912123.





Latest revision as of 23:46, 16 September 2006

    


 D.~Bar-Natan,   {\em 36 Torus Knots}, \texttt{http://katlas.math.toronto.edu/wiki/36\_Torus\_Knots}  


 D.~Bar-Natan. {\em The Knot Atlas,} \texttt{www.math.toronto.edu/$\sim$drorbn/KAtlas/}  

 B.L.~Feigin, {\em Lie algebras ${\rm gl}(\lambda)$ and cohomology of a Lie algebra of differential operators,} Russian Math.~Surveys  {\bf 43}  (1988),  no. 2, 169.  




 J.~Hoste, M.~Thistlethwaite.  \emph{Knotscape,} \texttt{www.math.utk.edu/$\sim$morwen/knotscape.html}  

 V.~Jones, {\em Hecke algebra representations of braid groups and link polynomials,} Ann. of Math. {\bf 126} no.2 (1987) 335.  














 H.~Morton, {\em Seifert circles and knot polynomials}, Math. Proc. Camb. Phil. Soc. {\bf 99} (1986), 107-110.   










 D.~Rolfsen. {\em Knots and Links}, Publish or Perish, 1976.    

 L.~Rudolph. {\em An obstruction to sliceness via contact geometry and ``classical'' gauge theory,} Invent.~Math. {\bf 119} (1995), 155-163.  

 L.~Rudolph. {\em Positive links are strongly quasipositive,} Proceedings of the Kirbyfest, Geom.~Top.~Monographs 2, Coventry, 1999.   


 A.~Shumakovitch. \newblock {\em KhoHo: a program for computing Khovanov homology}, \texttt{www.geometrie.ch/KhoHo/}