5 2: Difference between revisions
m (Reverted edit of 62.231.243.138, changed back to last version by Drorbn) |
m (Reverted edits by DarelTlaba (Talk); changed back to last version by Drorbn) |
(6 intermediate revisions by 4 users not shown) | |
(No difference)
|
Latest revision as of 07:15, 21 January 2008
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 5 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
5_2 is also known as the 3-twist knot. The Bowstring knot of practical knot tying deforms to 5_2. |
Knot presentations
Planar diagram presentation | X1425 X3849 X5,10,6,1 X9,6,10,7 X7283 |
Gauss code | -1, 5, -2, 1, -3, 4, -5, 2, -4, 3 |
Dowker-Thistlethwaite code | 4 8 10 2 6 |
Conway Notation | [32] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 6, width is 3, Braid index is 3 |
![]() |
![]() [{7, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 6}, {5, 7}, {6, 1}] |
[edit Notes on presentations of 5 2]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 2"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3849 X5,10,6,1 X9,6,10,7 X7283 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 5, -2, 1, -3, 4, -5, 2, -4, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 10 2 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[32] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{-1,-1,-1,-2,1,-2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 6, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 4}, {3, 5}, {4, 2}, {1, 3}, {2, 6}, {5, 7}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t+2 t^{-1} -3} |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 7, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-6} + q^{-5} - q^{-4} +2 q^{-3} - q^{-2} + q^{-1} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^6+a^4 z^2+a^4+a^2 z^2+a^2} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^3-2 a^7 z+a^6 z^4-2 a^6 z^2+a^6+2 a^5 z^3-2 a^5 z+a^4 z^4-a^4 z^2+a^4+a^3 z^3+a^2 z^2-a^2} |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{20}-q^{18}+q^{12}+q^{10}+q^8+q^6+q^2} |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{13}+q^7+q^5+q} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{36}-q^{32}-q^{26}-q^{20}+q^{14}+q^{10}+2 q^8+q^2} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{69}+q^{65}+q^{63}-q^{59}+q^{55}-q^{51}+q^{47}+q^{45}-q^{43}-q^{37}-2 q^{35}-q^{33}-q^{31}+q^{27}+q^{21}+2 q^{19}-q^{15}+q^{13}+2 q^{11}+q^9+q^3} |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{112}-q^{108}-q^{106}-q^{104}+q^{102}+q^{100}+q^{98}-2 q^{94}+q^{90}+q^{88}-2 q^{84}-q^{82}+2 q^{78}+q^{76}-q^{74}+q^{70}+2 q^{68}+q^{66}-q^{64}-q^{56}-2 q^{54}-q^{52}-q^{50}-q^{48}+q^{44}-q^{42}-q^{40}-q^{38}+2 q^{34}-q^{30}-q^{28}+q^{26}+4 q^{24}+q^{22}-q^{18}+2 q^{14}+q^{12}+q^{10}+q^4} |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{165}+q^{161}+q^{159}+q^{157}-q^{153}-2 q^{151}-q^{149}+q^{145}+2 q^{143}+q^{141}-q^{139}-2 q^{137}-q^{135}+q^{133}+2 q^{131}+2 q^{129}-2 q^{125}-3 q^{123}-q^{121}+q^{119}+2 q^{117}+q^{115}-2 q^{113}-2 q^{111}-q^{109}+q^{107}+3 q^{105}+q^{103}-q^{101}-q^{99}+q^{95}+2 q^{93}+q^{91}-q^{89}+q^{85}+q^{83}+q^{81}-q^{77}-q^{73}-q^{71}-q^{69}-q^{63}-2 q^{61}-2 q^{59}-2 q^{57}+2 q^{53}+q^{51}-q^{49}-2 q^{47}-2 q^{45}+q^{43}+3 q^{41}+3 q^{39}-3 q^{35}-2 q^{33}+3 q^{29}+3 q^{27}+2 q^{25}-q^{21}+q^{17}+q^{15}+q^{13}+q^{11}+q^5} |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{228}-q^{224}-q^{222}-q^{220}+2 q^{214}+2 q^{212}+q^{210}-q^{206}-2 q^{204}-3 q^{202}+q^{198}+2 q^{196}+2 q^{194}+q^{192}-q^{190}-4 q^{188}-2 q^{186}+2 q^{182}+3 q^{180}+4 q^{178}+q^{176}-3 q^{174}-3 q^{172}-3 q^{170}+2 q^{166}+4 q^{164}+2 q^{162}-2 q^{160}-3 q^{158}-4 q^{156}-q^{154}+2 q^{152}+4 q^{150}+2 q^{148}-q^{146}-2 q^{144}-3 q^{142}-q^{140}+q^{138}+3 q^{136}+q^{134}-2 q^{132}-2 q^{130}-2 q^{128}+q^{124}+2 q^{122}+q^{120}-q^{118}+q^{116}+q^{114}+2 q^{112}+2 q^{110}+2 q^{108}+q^{106}-q^{98}-q^{96}-q^{94}+q^{90}-q^{88}-q^{86}-2 q^{84}-2 q^{82}-2 q^{80}+3 q^{76}+q^{74}-2 q^{70}-4 q^{68}-4 q^{66}-q^{64}+4 q^{62}+3 q^{60}+2 q^{58}-2 q^{56}-4 q^{54}-5 q^{52}-q^{50}+5 q^{48}+4 q^{46}+4 q^{44}+q^{42}-2 q^{40}-4 q^{38}-2 q^{36}+2 q^{34}+2 q^{32}+3 q^{30}+2 q^{28}+q^{26}-q^{24}+q^{20}+q^{16}+q^{14}+q^{12}+q^6} |
A2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{20}-q^{18}+q^{12}+q^{10}+q^8+q^6+q^2} |
0,2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}+q^{48}+q^{46}-q^{44}-q^{42}-q^{40}-q^{38}-q^{36}-q^{34}-q^{30}-q^{28}-q^{26}+2 q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^4} |
1,0 | |
1,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{52}+2 q^{48}-2 q^{46}-2 q^{42}+2 q^{34}-2 q^{32}-5 q^{28}-4 q^{24}+2 q^{22}+q^{20}+2 q^{18}+4 q^{16}+2 q^{14}+4 q^{12}+2 q^8+q^4} |
2,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{50}+q^{48}+q^{46}-q^{44}-q^{42}-q^{40}-q^{38}-q^{36}-q^{34}-q^{30}-q^{28}-q^{26}+2 q^{20}+2 q^{18}+2 q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^4} |
3,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{90}-q^{88}-q^{86}+2 q^{82}+2 q^{80}+2 q^{78}-q^{66}+q^{62}+2 q^{60}+q^{58}-q^{54}-q^{52}-3 q^{50}-4 q^{48}-5 q^{46}-4 q^{44}-3 q^{42}-2 q^{40}+2 q^{36}+3 q^{34}+2 q^{32}+3 q^{30}+2 q^{28}+3 q^{26}+2 q^{24}+q^{22}+q^{20}+2 q^{18}+3 q^{16}+2 q^{14}+q^6} |
A3 Invariants.
Weight | Invariant |
---|---|
0,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{27}-q^{25}-q^{23}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^7+q^3} |
0,1,0 | |
1,0,0 | |
1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}+2 q^{64}-q^{60}-3 q^{56}+q^{54}-q^{52}+q^{50}+3 q^{48}-q^{46}+q^{44}-2 q^{42}-4 q^{40}-4 q^{38}-4 q^{36}-5 q^{34}-3 q^{32}-q^{30}+5 q^{26}+3 q^{24}+7 q^{22}+6 q^{20}+3 q^{18}+5 q^{16}+q^{14}+2 q^{12}+2 q^{10}+q^6} |
A4 Invariants.
Weight | Invariant |
---|---|
0,0,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}-q^{32}-q^{30}-q^{28}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8+q^4} |
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{56}+q^{54}+q^{52}+q^{50}+q^{48}-q^{46}-3 q^{44}-4 q^{42}-4 q^{40}-4 q^{38}-3 q^{36}+q^{32}+2 q^{30}+3 q^{28}+3 q^{26}+2 q^{24}+2 q^{22}+2 q^{20}+2 q^{18}+q^{16}+2 q^{14}+2 q^{12}+q^{10}+q^6} |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}-q^{32}-q^{30}-q^{28}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^8+q^4} |
A5 Invariants.
Weight | Invariant |
---|---|
0,0,0,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{41}-q^{39}-q^{37}-q^{35}-q^{33}+q^{27}+q^{25}+q^{23}+q^{21}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^5} |
1,0,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{41}-q^{39}-q^{37}-q^{35}-q^{33}+q^{27}+q^{25}+q^{23}+q^{21}+q^{19}+q^{17}+q^{15}+q^{13}+q^{11}+q^9+q^5} |
A6 Invariants.
Weight | Invariant |
---|---|
0,0,0,0,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{48}-q^{46}-q^{44}-q^{42}-q^{40}-q^{38}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^6} |
1,0,0,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{48}-q^{46}-q^{44}-q^{42}-q^{40}-q^{38}+q^{32}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+q^{14}+q^{12}+q^{10}+q^6} |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{68}+q^{60}-q^{56}-q^{54}-q^{52}-q^{50}-q^{48}-q^{46}-q^{44}+q^{34}+q^{32}+q^{30}+q^{26}+q^{24}+q^{22}+q^{18}+q^{16}+q^{14}+q^6} |
B3 Invariants.
Weight | Invariant |
---|---|
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}+q^{92}-q^{82}-q^{80}-q^{78}-q^{76}-q^{74}-q^{72}-q^{70}-q^{68}-q^{66}-q^{64}+q^{56}+q^{54}+q^{50}+q^{48}+q^{46}+q^{42}+q^{40}+q^{38}+q^{34}+q^{30}+q^{26}+q^{24}+q^{22}+q^{18}+q^{10}} |
B4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{132}+q^{124}-q^{110}-q^{106}-q^{104}-q^{102}-q^{100}-q^{98}-q^{96}-q^{94}-q^{92}-q^{90}-q^{88}-q^{86}+q^{74}+q^{72}+q^{70}+q^{66}+q^{64}+q^{62}+q^{58}+q^{56}+q^{54}+q^{50}+q^{46}+q^{42}+q^{38}+q^{34}+q^{32}+q^{30}+q^{26}+q^{22}+q^{14}} |
C3 Invariants.
Weight | Invariant |
---|---|
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{58}-q^{54}-q^{48}+q^{30}+q^{26}+q^{22}+q^{20}+q^{18}+q^{16}+q^{12}+q^{10}+q^6} |
C4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{74}-q^{70}-q^{62}-q^{60}-q^{48}+q^{42}+q^{38}+q^{34}+q^{30}+q^{28}+q^{26}+q^{24}+q^{22}+q^{20}+q^{16}+q^{14}+q^{12}+q^8} |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{58}+q^{54}-q^{48}-2 q^{46}-2 q^{44}-2 q^{42}-2 q^{40}-2 q^{38}+2 q^{32}+q^{30}+2 q^{28}+q^{26}+2 q^{24}+q^{22}+q^{20}+q^{18}+q^{16}+2 q^{14}+q^{12}+q^{10}+q^6} |
G2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{204}+q^{192}+q^{190}+q^{188}-q^{186}-q^{184}-q^{176}+q^{172}-2 q^{168}-q^{166}-q^{156}+q^{154}+q^{152}+q^{142}+q^{140}+q^{138}+2 q^{136}+q^{134}-q^{132}-2 q^{130}-q^{122}-q^{120}-q^{118}-2 q^{116}-2 q^{114}-3 q^{112}-2 q^{110}-q^{108}-2 q^{106}-2 q^{104}-q^{102}-q^{100}-q^{98}-q^{96}-2 q^{94}-2 q^{92}+q^{88}+q^{86}+2 q^{84}+q^{82}+q^{78}+2 q^{74}+2 q^{72}+2 q^{70}+2 q^{68}+3 q^{66}+2 q^{64}+q^{62}+q^{60}+2 q^{58}+2 q^{56}+q^{54}+q^{50}+3 q^{48}+q^{46}+q^{36}+q^{34}+q^{32}+q^{30}+q^{18}} |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{100}+q^{96}-q^{94}-q^{92}+q^{90}-q^{88}-q^{84}-q^{82}-q^{78}-q^{76}-q^{74}-q^{72}-q^{68}-q^{66}+q^{64}+q^{60}+q^{56}+q^{54}+2 q^{50}-q^{48}+2 q^{46}+q^{44}+q^{40}+q^{34}+2 q^{24}+q^{20}+q^{14}+q^{10}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["5 2"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t+2 t^{-1} -3} |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 7, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-6} + q^{-5} - q^{-4} +2 q^{-3} - q^{-2} + q^{-1} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^6+a^4 z^2+a^4+a^2 z^2+a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^7 z^3-2 a^7 z+a^6 z^4-2 a^6 z^2+a^6+2 a^5 z^3-2 a^5 z+a^4 z^4-a^4 z^2+a^4+a^3 z^3+a^2 z^2-a^2} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, ): {K11n57,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 2"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t+2 t^{-1} -3} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle - q^{-6} + q^{-5} - q^{-4} +2 q^{-3} - q^{-2} + q^{-1} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11n57,} |
Vassiliev invariants
V2 and V3: | (2, -3) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle s=} -2 is the signature of 5 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-2} - q^{-3} +3 q^{-5} -2 q^{-6} - q^{-7} +4 q^{-8} -3 q^{-9} - q^{-10} +3 q^{-11} -2 q^{-12} - q^{-13} +2 q^{-14} - q^{-15} - q^{-16} + q^{-17} } |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-3} - q^{-4} + q^{-6} +2 q^{-7} -2 q^{-8} -2 q^{-9} +2 q^{-10} +4 q^{-11} -3 q^{-12} -3 q^{-13} +2 q^{-14} +5 q^{-15} -4 q^{-16} -4 q^{-17} +2 q^{-18} +4 q^{-19} -3 q^{-20} -3 q^{-21} +2 q^{-22} +3 q^{-23} - q^{-24} -3 q^{-25} + q^{-26} +2 q^{-27} -2 q^{-29} + q^{-31} + q^{-32} - q^{-33} } |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-4} - q^{-5} + q^{-7} +2 q^{-9} -3 q^{-10} - q^{-11} +2 q^{-12} + q^{-13} +5 q^{-14} -6 q^{-15} -3 q^{-16} +2 q^{-17} +2 q^{-18} +7 q^{-19} -8 q^{-20} -4 q^{-21} +2 q^{-22} +2 q^{-23} +9 q^{-24} -9 q^{-25} -5 q^{-26} +2 q^{-27} +2 q^{-28} +8 q^{-29} -8 q^{-30} -4 q^{-31} +2 q^{-32} +2 q^{-33} +7 q^{-34} -6 q^{-35} -3 q^{-36} + q^{-37} + q^{-38} +6 q^{-39} -4 q^{-40} -2 q^{-41} - q^{-42} +5 q^{-44} -2 q^{-45} - q^{-46} - q^{-47} - q^{-48} +3 q^{-49} - q^{-52} - q^{-53} + q^{-54} } |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-5} - q^{-6} + q^{-8} + q^{-11} -2 q^{-12} - q^{-13} +2 q^{-14} +2 q^{-15} + q^{-16} + q^{-17} -5 q^{-18} -3 q^{-19} + q^{-20} +5 q^{-21} +4 q^{-22} + q^{-23} -7 q^{-24} -6 q^{-25} + q^{-26} +6 q^{-27} +6 q^{-28} +2 q^{-29} -9 q^{-30} -8 q^{-31} + q^{-32} +6 q^{-33} +7 q^{-34} +3 q^{-35} -9 q^{-36} -9 q^{-37} + q^{-38} +6 q^{-39} +8 q^{-40} +2 q^{-41} -8 q^{-42} -8 q^{-43} + q^{-44} +6 q^{-45} +7 q^{-46} + q^{-47} -6 q^{-48} -7 q^{-49} +5 q^{-51} +6 q^{-52} + q^{-53} -4 q^{-54} -5 q^{-55} -2 q^{-56} +3 q^{-57} +5 q^{-58} + q^{-59} - q^{-60} -4 q^{-61} -3 q^{-62} + q^{-63} +3 q^{-64} +2 q^{-65} + q^{-66} -2 q^{-67} -3 q^{-68} + q^{-70} + q^{-71} +2 q^{-72} -2 q^{-74} - q^{-75} + q^{-78} + q^{-79} - q^{-80} } |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-6} - q^{-7} + q^{-9} - q^{-12} +2 q^{-13} -2 q^{-14} - q^{-15} +3 q^{-16} + q^{-17} + q^{-18} -2 q^{-19} +2 q^{-20} -6 q^{-21} -3 q^{-22} +5 q^{-23} +4 q^{-24} +4 q^{-25} -2 q^{-26} +3 q^{-27} -12 q^{-28} -7 q^{-29} +6 q^{-30} +6 q^{-31} +8 q^{-32} - q^{-33} +4 q^{-34} -17 q^{-35} -10 q^{-36} +6 q^{-37} +8 q^{-38} +10 q^{-39} +6 q^{-41} -20 q^{-42} -12 q^{-43} +6 q^{-44} +8 q^{-45} +11 q^{-46} +8 q^{-48} -21 q^{-49} -13 q^{-50} +6 q^{-51} +8 q^{-52} +12 q^{-53} +8 q^{-55} -20 q^{-56} -12 q^{-57} +6 q^{-58} +8 q^{-59} +11 q^{-60} +6 q^{-62} -18 q^{-63} -11 q^{-64} +5 q^{-65} +7 q^{-66} +9 q^{-67} +6 q^{-69} -15 q^{-70} -9 q^{-71} +3 q^{-72} +5 q^{-73} +7 q^{-74} + q^{-75} +7 q^{-76} -12 q^{-77} -7 q^{-78} + q^{-79} +2 q^{-80} +4 q^{-81} +2 q^{-82} +8 q^{-83} -8 q^{-84} -5 q^{-85} - q^{-86} + q^{-88} +2 q^{-89} +8 q^{-90} -4 q^{-91} -2 q^{-92} -2 q^{-93} - q^{-94} - q^{-95} +6 q^{-97} - q^{-98} - q^{-100} - q^{-101} -2 q^{-102} - q^{-103} +3 q^{-104} + q^{-106} - q^{-109} - q^{-110} + q^{-111} } |
7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-7} - q^{-8} + q^{-10} - q^{-13} +2 q^{-15} -2 q^{-16} +2 q^{-18} + q^{-19} + q^{-20} -2 q^{-21} -2 q^{-22} +2 q^{-23} -5 q^{-24} +4 q^{-26} +4 q^{-27} +5 q^{-28} -2 q^{-29} -4 q^{-30} -2 q^{-31} -10 q^{-32} -2 q^{-33} +6 q^{-34} +6 q^{-35} +12 q^{-36} +2 q^{-37} -6 q^{-38} -5 q^{-39} -17 q^{-40} -5 q^{-41} +6 q^{-42} +9 q^{-43} +18 q^{-44} +5 q^{-45} -6 q^{-46} -7 q^{-47} -22 q^{-48} -9 q^{-49} +7 q^{-50} +10 q^{-51} +21 q^{-52} +7 q^{-53} -5 q^{-54} -6 q^{-55} -25 q^{-56} -11 q^{-57} +7 q^{-58} +10 q^{-59} +23 q^{-60} +7 q^{-61} -4 q^{-62} -5 q^{-63} -26 q^{-64} -12 q^{-65} +7 q^{-66} +9 q^{-67} +24 q^{-68} +7 q^{-69} -3 q^{-70} -6 q^{-71} -25 q^{-72} -11 q^{-73} +7 q^{-74} +9 q^{-75} +23 q^{-76} +7 q^{-77} -4 q^{-78} -7 q^{-79} -23 q^{-80} -10 q^{-81} +6 q^{-82} +8 q^{-83} +21 q^{-84} +7 q^{-85} -5 q^{-86} -6 q^{-87} -20 q^{-88} -8 q^{-89} +4 q^{-90} +6 q^{-91} +18 q^{-92} +7 q^{-93} -3 q^{-94} -4 q^{-95} -16 q^{-96} -7 q^{-97} +2 q^{-98} +2 q^{-99} +14 q^{-100} +8 q^{-101} - q^{-102} - q^{-103} -12 q^{-104} -6 q^{-105} - q^{-106} -2 q^{-107} +10 q^{-108} +7 q^{-109} + q^{-110} +2 q^{-111} -6 q^{-112} -5 q^{-113} -3 q^{-114} -5 q^{-115} +6 q^{-116} +5 q^{-117} + q^{-118} +5 q^{-119} -2 q^{-120} -2 q^{-121} -3 q^{-122} -6 q^{-123} +2 q^{-124} +2 q^{-125} +4 q^{-127} + q^{-128} + q^{-129} - q^{-130} -5 q^{-131} - q^{-134} +2 q^{-135} + q^{-136} +2 q^{-137} + q^{-138} -2 q^{-139} - q^{-140} - q^{-142} + q^{-145} + q^{-146} - q^{-147} } |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|