Torus Knot Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
<* (* |
|||
<!-- This template is used for generating all the knots pages for knots in the torus knot table --> |
|||
*) *> |
|||
⚫ | |||
<!-- <*K=Knot[ThisKnot]; {m,n}=List@@K;*> --> |
<!-- <*K=Knot[ThisKnot]; {m,n}=List@@K;*> --> |
||
Line 58: | Line 53: | ||
<*InOut["Kh[``][q, t]", K]*> |
<*InOut["Kh[``][q, t]", K]*> |
||
</table> |
</table> |
||
<* (* <!-- *) *> {{Category:Knot Page}} <* (* --> *) *> |
|||
⚫ |
Revision as of 23:02, 27 August 2005
[[Image:Data:Torus Knot Splice Base/Previous Knot.jpg|80px|link=Data:Torus Knot Splice Base/Previous Knot]] |
[[Image:Data:Torus Knot Splice Base/Next Knot.jpg|80px|link=Data:Torus Knot Splice Base/Next Knot]] |
File:Torus Knot Splice Base.jpg | Visit [[[:Template:KnotilusURL]] Torus Knot Splice Base's page] at Knotilus!
Visit <*m*>.<*n*>.html Torus Knot Splice Base's page at the original Knot Atlas! |
Torus Knot Splice Base Further Notes and Views
Knot presentations
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Torus Knot Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Torus Knot Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Torus Knot Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Torus Knot Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Torus Knot Splice Base/Determinant, Data:Torus Knot Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Torus Knot Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Torus Knot Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Torus Knot Splice Base/Kauffman Polynomial |
Vassiliev invariants
V2 and V3: | (Data:Torus Knot Splice Base/V 2, Data:Torus Knot Splice Base/V 3) |
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where Data:Torus Knot Splice Base/Signature is the signature of Torus Knot Splice Base. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
<*InOut["Crossings[``]", K]*> <*InOut["PD[``]", K]*> <*InOut["GaussCode[``]", K]*> <*InOut["BR[``]", K]*> <*InOut["alex = Alexander[``][t]", K]*> <*InOut["Conway[``][z]", K]*> <*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> <*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> <*InOut["J=Jones[``][q]", K]*> <*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*> <* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> <*InOut["A2Invariant[``][q]", K]*> <*InOut["Kauffman[``][a, z]", K]*> <*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> <*InOut["Kh[``][q, t]", K]*>
In[1]:= |
<< KnotTheory` |
<*InOut[1]; KnotTheoryWelcomeMessage[]*> |
<* (* *) *> <* (* Category:Splice Template *) *>