Naming and Enumeration: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 46: | Line 46: | ||
<!--$$Length[Skeleton[Link[6, Alternating, 4]]]$$--> |
<!--$$Length[Skeleton[Link[6, Alternating, 4]]]$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
<tt><font color=blue>In[6]:=</font></tt><code><font color=red> Length[Skeleton[Link[6, Alternating, 4]]]</font></code> |
|||
<tt>Out[6]=</tt> <math>3</math> |
|||
<!--END--> |
<!--END--> |
||
<!--$$?AllKnots$$--> |
<!--$$?AllKnots$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{| width=70% border=1 align=center |
|||
| |
|||
<font color=blue><tt>In[7]:=</tt></font><font color=red><code> ?AllKnots</code></font> |
|||
<tt>AllKnots[] return a list of all the named knots known to KnotTheory.m.</tt> |
|||
|} |
|||
<!--END--> |
<!--END--> |
||
<!--$$?AllLinks$$--> |
<!--$$?AllLinks$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
{| width=70% border=1 align=center |
|||
| |
|||
<font color=blue><tt>In[8]:=</tt></font><font color=red><code> ?AllLinks</code></font> |
|||
<tt>AllLinks[] return a list of all the named links known to KnotTheory.m.</tt> |
|||
|} |
|||
<!--END--> |
<!--END--> |
||
Line 57: | Line 75: | ||
<!--$$Length /@ {AllKnots[], AllLinks[]}$$--> |
<!--$$Length /@ {AllKnots[], AllLinks[]}$$--> |
||
<!--The lines to END were generated by WikiSplice: do not edit; see manual.--> |
|||
<tt><font color=blue>In[9]:=</font></tt><code><font color=red> Length /@ {AllKnots[], AllLinks[]}</font></code> |
|||
<tt>Out[9]=</tt> <math>\{802,1424\}</math> |
|||
<!--END--> |
<!--END--> |
||
Revision as of 15:08, 23 August 2005
KnotTheory`
comes loaded with some knot tables; currently, the Rolfsen table of prime knots with up to 10 crossings [Rolfsen], the Hoste-Thistlethwaite tables of prime knots with up to 16 crossings and the Thistlethwaite table of prime links with up to 11 crossings (see Further Knot Theory Software#Knotscape):
(For In[1] see Setup)
In[2]:= Knot[n, k] denotes the kth knot with n crossings in the Rolfsen table. Knot[11, Alternating, k] denotes the kth alternating 11-crossing knot in the Hoste-Thistlethwaite table. Knot[11, NonAlternating, k] denotes the kth non alternating 11-crossing knot in the Hoste-Thistlethwaite table. |
In[3]:= Link[n, Alternating, k] denotes the kth alternating n-crossing link in the Thistlethwaite table. Link[n, NonAlternating, k] denotes the kth non alternating n-crossing link in the Thistlethwaite table. |
Thus, for example, let us verify that the knots 6_1 and 9_46 have the same Alexander polynomial:
In[4]:= Alexander[Knot[6, 1]][t]
Out[4]=
In[5]:= Alexander[Knot[9, 46]][t]
Out[5]=
We can also check that the Borromean rings, L6a4 in the Thistlethwaite table, is a 3-component link:
In[6]:= Length[Skeleton[Link[6, Alternating, 4]]]
Out[6]=
In[7]:= AllKnots[] return a list of all the named knots known to KnotTheory.m. |
In[8]:= AllLinks[] return a list of all the named links known to KnotTheory.m. |
Thus at the moment there are 802 knots and 1424 links known to KnotTheory`
:
In[9]:= Length /@ {AllKnots[], AllLinks[]}
Out[9]=
References
[Rolfsen] ^ D. Rolfsen, Knots and Links, Publish or Perish, Mathematics Lecture Series 7, Wilmington 1976.