T(5,4): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- Script generated - do not edit! -->
<!-- Script generated - do not edit! -->

<!-- TorusKnot[5, 4] -->

<span id="top"></span>

{{TorusKnotsNavigation|"T(7,3)"|"T(15,2)"}}

{{:Further "T(5,4)" views}}

[[Planar Diagrams|Planar Diagram]]: PD[X[17, 25, 18, 24], X[10, 26, 11, 25], X[3, 27, 4, 26], X[11, 19, 12, 18],
X[4, 20, 5, 19], X[27, 21, 28, 20], X[5, 13, 6, 12], X[28, 14, 29, 13],
X[21, 15, 22, 14], X[29, 7, 30, 6], X[22, 8, 23, 7], X[15, 9, 16, 8],
X[23, 1, 24, 30], X[16, 2, 17, 1], X[9, 3, 10, 2]]

<table border=0><tr align=center>
<td>
<a href="../Manual/TubePlot.html"><img src="m.n_240.jpg"
border=0 alt="T(m,n)"><br><font size=-2>TubePlot</font></a>
</td>
<td>
<h1>&nbsp;&nbsp; The m*(-1 + n)-Crossing Torus Knot T(m,n)</h1>
Include["$knotaka.html"]
<p>Visit <a class=external
href="KnotilusURL[GaussCode[PD[TorusKnot[m, n]]]]">T(m,n)'s
page</a> at <a class=external
href="http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/html/start.html">Kno
tilus</a>!
<p><a href="../Manual/Acknowledgement.html">Acknowledgement</a>
</td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/GaussCode.html">Gauss Code</a>: </td>
<td><em>{PD[TorusKnot[m, n]]}</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/BR.html">Braid Representative</a>: </td>
<td>&nbsp;&nbsp;&nbsp;</td>
<td>
BraidPlot[CollapseBraid[BR[TorusKnot[m, n]]], Mode -> "HTML"]
</td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/AlexanderConway.html">Alexander Polynomial</a>:
</td>
<td><em>PolyPrint[1, t]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/AlexanderConway.html">Conway Polynomial</a>: </td>
<td><em>PolyPrint[1, z]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td>Other knots with the same <a
href="../Manual/AlexanderConway.html">Alexander/Conway Polynomial</a>:
</td>
<td><em>{StringJoin[ToString[Knot[0, 1], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 34], FormatType -> HTMLForm], ", ",
ToString[Knot[11, NonAlternating, 42], FormatType -> HTMLForm], ", "]...}</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td>
<a href="../Manual/DetAndSignature.html">Determinant and Signature</a>:
</td>
<td><em>{1, 0}</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Jones.html">Jones Polynomial</a>:
</td>
<td><em>PolyPrint[-((Sqrt[q]*TorusKnot[m, n])/(1 + q)), q]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td>Other knots (up to mirrors) with the same <a
href="../Manual/Jones.html">Jones Polynomial</a>:
</td>
<td><em>{""...}</em></td>
</tr></table>

Include["ColouredJones.mhtml"]

<p><table><tr align=left valign=top>
<td><a href="../Manual/A2Invariant.html">A2 (sl(3)) Invariant</a>:
</td>
<td><em>PolyPrint[TorusKnot[m, n], q]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Kauffman.html">Kauffman Polynomial</a>:
</td>
<td><em>PolyPrint[KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][1/4]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) +
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
Flatten[KnotTheory`Kauffman`Decorate /@ #1] & ]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]) +
KnotTheory`Kauffman`StateValuation[9*I, (-I)*z][
{KnotTheory`Kauffman`State[PD[TorusKnot[m, n]]]}]/
((-1)^(PD[TorusKnot[m, n]]/4)*3^PD[TorusKnot[m, n]]), {9, z}]</em></td>
</tr></table>

<p><table><tr align=left valign=top>
<td><a href="../Manual/Vassiliev.html">V<sub>2</sub> and
V<sub>3</sub>, the type 2 and 3 Vassiliev invariants</a>: </td>
<td><em>{0, 0}</em></td>
</tr></table>

<p><a href="../Manual/KhovanovHomology.html">Khovanov Homology</a>.
The coefficients of the monomials <em>t<sup>r</sup>q<sup>j</sup></em>
are shown, along with their alternating sums &chi; (fixed <em>j</em>,
alternation over <em>r</em>).
The squares with <font class=HLYellow>yellow</font> highlighting
are those on the "critical diagonals", where <em>j-2r=s+1</em> or
<em>j-2r=s+1</em>, where <em>s=0</em> is the signature of
T(m,n). Nonzero entries off the critical diagonals (if
any exist) are highlighted in <font class=HLRed>red</font>.
<br><center>
TabularKh[$Failed[q, t], {1, -1}]
</center>

ComputerTalkHeader

GraphicsBox["`1`.`2`_240.jpg", "TubePlot[TorusKnot[`1`, `2`]]", m, n]
InOut["Crossings[``]", TorusKnot[m, n]]
InOut["PD[``]", TorusKnot[m, n]]
InOut["GaussCode[``]", TorusKnot[m, n]]
InOut["BR[``]", TorusKnot[m, n]]
InOut["alex = Alexander[``][t]", TorusKnot[m, n]]
InOut["Conway[``][z]", TorusKnot[m, n]]
InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]
InOut["{KnotDet[`1`], KnotSignature[`1`]}", TorusKnot[m, n]]
InOut["J=Jones[``][q]", TorusKnot[m, n]]
InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"]
Include["ColouredJonesM.mhtml"]
InOut["A2Invariant[``][q]", TorusKnot[m, n]]
InOut["Kauffman[``][a, z]", TorusKnot[m, n]]
InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", TorusKnot[m, n]]
InOut["Kh[``][q, t]", TorusKnot[m, n]]

</table>

<p><hr><p>

<table valign=center width=100% border=0><tr>
<td align=left>
<a href="/~drorbn/">Dror Bar-Natan</a>:
<a href="../index.html">The Knot Atlas</a>:
<a href="index.html">Torus Knots</a>:
<a href="#top">The Torus Knot T(m,n)</a>
</td>
<td align=right>
<table border=0><tr>
<td align=center>
<a href="prevm.prevn.html"><img border=0
width=120 height=120 src="prevm.prevn_120.jpg"
alt="T(prevm,prevn)"><br>T(prevm,prevn)</a>
</td><td align=center>
<a href="nextm.nextn.html"><img border=0
width=120 height=120 src="nextm.nextn_120.jpg"
alt="T(nextm,nextn)"><br>T(nextm,nextn)</a>
</td>
</tr></table>
</td>
</tr></table>

</body>
</html><!-- Script generated - do not edit! -->


<!-- TorusKnot[5, 4] -->
<!-- TorusKnot[5, 4] -->

Revision as of 20:10, 25 August 2005


Previous: "T(7,3)"; Next: "T(15,2)"

File:"T(7,3)".gif

"T(7,3)"

File:"T(15,2)".gif

"T(15,2)"

Visit T(5,4)'s page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit [{{{KnotilusURL}}} T(5,4)'s page] at Knotilus!

Visit T(5,4)'s page at the original Knot Atlas!

Knot presentations

Planar diagram presentation X17,25,18,24 X10,26,11,25 X3,27,4,26 X11,19,12,18 X4,20,5,19 X27,21,28,20 X5,13,6,12 X28,14,29,13 X21,15,22,14 X29,7,30,6 X22,8,23,7 X15,9,16,8 X23,1,24,30 X16,2,17,1 X9,3,10,2
Gauss code 14, 15, -3, -5, -7, 10, 11, 12, -15, -2, -4, 7, 8, 9, -12, -14, -1, 4, 5, 6, -9, -11, -13, 1, 2, 3, -6, -8, -10, 13
Dowker-Thistlethwaite code 16 -26 -12 22 -2 -18 28 -8 -24 4 -14 -30 10 -20 -6
Conway Notation Data:T(5,4)/Conway Notation

Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index (super bridge index) 2 (4)
Nakanishi index 1

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 5, 8 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(5,4)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(5,4)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (15, 50)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(5,4)/V 2,1 Data:T(5,4)/V 3,1 Data:T(5,4)/V 4,1 Data:T(5,4)/V 4,2 Data:T(5,4)/V 4,3 Data:T(5,4)/V 5,1 Data:T(5,4)/V 5,2 Data:T(5,4)/V 5,3 Data:T(5,4)/V 5,4 Data:T(5,4)/V 6,1 Data:T(5,4)/V 6,2 Data:T(5,4)/V 6,3 Data:T(5,4)/V 6,4 Data:T(5,4)/V 6,5 Data:T(5,4)/V 6,6 Data:T(5,4)/V 6,7 Data:T(5,4)/V 6,8 Data:T(5,4)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Template:Khovanov Invariants Template:Quantum Invariants