5 1: Difference between revisions
No edit summary |
No edit summary |
||
Line 6: | Line 6: | ||
<!-- --> |
<!-- --> |
||
{{Rolfsen Knot Page| |
{{Rolfsen Knot Page| |
||
n = |
n = <math>n</math> | |
||
k = |
k = <math>k</math> | |
||
same_alexander = <nowiki>[[ |
same_alexander = <nowiki>[[0_1]], [[K11n34]], [[K11n42]], </nowiki> | |
||
same_jones = |
same_jones = | |
||
coloured_jones_2 = <math> |
coloured_jones_2 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( |
||
\begin{array}{ccccccccc} |
|||
coloured_jones_3 = <math>- q^{-36} + q^{-35} + q^{-31} - q^{-29} + q^{-27} - q^{-25} - q^{-21} + q^{-18} - q^{-17} + q^{-14} - q^{-13} + q^{-10} + q^{-6} </math> | |
|||
q & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
coloured_jones_4 = <math> q^{-58} - q^{-57} - q^{-54} + q^{-53} - q^{-52} + q^{-51} - q^{-49} + q^{-48} - q^{-47} + q^{-46} + q^{-45} - q^{-44} + q^{-43} - q^{-42} + q^{-41} - q^{-39} + q^{-38} - q^{-37} + q^{-36} - q^{-34} + q^{-33} - q^{-32} - q^{-29} + q^{-28} - q^{-27} + q^{-23} - q^{-22} + q^{-18} - q^{-17} + q^{-13} + q^{-8} </math> | |
|||
0 & 0 & 0 & q^2 & 0 & 0 & 0 & 0 & 0 \\ |
|||
coloured_jones_5 = <math>- q^{-85} + q^{-84} + q^{-81} - q^{-79} + q^{-75} - q^{-73} - q^{-72} + q^{-69} - q^{-66} + q^{-63} - q^{-60} + q^{-58} + q^{-57} - q^{-54} + q^{-52} - q^{-48} + q^{-46} - q^{-42} + q^{-40} - q^{-39} - q^{-36} + q^{-34} - q^{-33} + q^{-28} - q^{-27} + q^{-22} - q^{-21} + q^{-16} + q^{-10} </math> | |
|||
0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 & 0 \\ |
|||
coloured_jones_6 = <math> q^{-117} - q^{-116} - q^{-113} +2 q^{-110} - q^{-109} - q^{-106} + q^{-104} +2 q^{-103} - q^{-102} -2 q^{-99} + q^{-97} +2 q^{-96} - q^{-95} -2 q^{-92} +2 q^{-89} - q^{-88} -2 q^{-85} + q^{-83} +2 q^{-82} - q^{-81} -2 q^{-78} + q^{-76} +2 q^{-75} - q^{-74} - q^{-71} + q^{-69} +2 q^{-68} - q^{-67} - q^{-64} +2 q^{-61} - q^{-60} - q^{-57} +2 q^{-54} - q^{-53} - q^{-50} + q^{-47} - q^{-46} - q^{-43} + q^{-40} - q^{-39} + q^{-33} - q^{-32} + q^{-26} - q^{-25} + q^{-19} + q^{-12} </math> | |
|||
0 & q^2 & 0 & q-q^3 & 0 & 0 & 0 & 0 & 0 \\ |
|||
coloured_jones_7 = <math>- q^{-154} + q^{-153} + q^{-150} - q^{-147} - q^{-146} + q^{-145} + q^{-142} - q^{-141} - q^{-139} - q^{-138} + q^{-137} + q^{-136} + q^{-134} - q^{-133} - q^{-131} - q^{-130} + q^{-129} + q^{-128} + q^{-127} + q^{-126} - q^{-125} - q^{-123} - q^{-122} + q^{-121} + q^{-119} + q^{-118} - q^{-117} - q^{-115} - q^{-114} + q^{-113} + q^{-111} + q^{-110} - q^{-109} - q^{-108} - q^{-107} - q^{-106} + q^{-105} + q^{-103} + q^{-102} - q^{-101} - q^{-100} - q^{-98} + q^{-97} + q^{-95} + q^{-94} - q^{-93} - q^{-92} - q^{-90} + q^{-89} + q^{-87} + q^{-86} - q^{-85} - q^{-82} + q^{-81} + q^{-79} + q^{-78} - q^{-77} - q^{-74} + q^{-71} + q^{-70} - q^{-69} - q^{-66} + q^{-63} + q^{-62} - q^{-61} - q^{-58} + q^{-54} - q^{-53} - q^{-50} + q^{-46} - q^{-45} + q^{-38} - q^{-37} + q^{-30} - q^{-29} + q^{-22} + q^{-14} </math> |
|||
0 & 0 & 0 & 0 & q^2 & 0 & -(q-1) \left(q^{5/4}+\sqrt[4]{q}\right)^2 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^2 & 0 \\ |
|||
0 & 0 & q^3 & 0 & q^{5/2}-q^{7/2} & 0 & (q-1)^2 q (q+1) & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & q^2 & 0 & q-q^3 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccccccc} |
|||
\frac{1}{q} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{q^2-1}{q^3} & 0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{(q-1)^2 (q+1)}{q^4} & 0 & \frac{q-1}{q^{5/2}} & 0 & \frac{1}{q^3} & 0 & 0 \\ |
|||
0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{(q-1) (q+1)^2}{q^{9/2}} & 0 & \frac{1}{q^2} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^3} & 0 & \frac{1}{q^2} & 0 \\ |
|||
0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^2} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccc} |
|||
0 & 0 & \frac{1}{\sqrt{q}} \\ |
|||
0 & 1 & 0 \\ |
|||
\sqrt{q} & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccc} |
|||
0 & 0 & \frac{1}{\sqrt{q}} \\ |
|||
0 & 1 & 0 \\ |
|||
\sqrt{q} & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccc} |
|||
0 & 0 & \frac{1}{\sqrt{q}} \\ |
|||
0 & 1 & 0 \\ |
|||
\sqrt{q} & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccc} |
|||
0 & 0 & \frac{1}{\sqrt{q}} \\ |
|||
0 & 1 & 0 \\ |
|||
\sqrt{q} & 0 & 0 |
|||
\end{array} |
|||
\right)\right)\right]}{q+\frac{1}{q}+1}\right]</math> | |
|||
coloured_jones_3 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( |
|||
\begin{array}{cccccccccccccccc} |
|||
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & q^3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 \\ |
|||
0 & q^3 & 0 & 0 & q^{3/2}-q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & q^{7/2} & 0 & 0 & -q^{3/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & -(q-1) q^{3/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 \\ |
|||
0 & 0 & q^{9/2} & 0 & 0 & q^{7/2}-q^{11/2} & 0 & 0 & q^{13/2}-q^{9/2}-q^{7/2}+q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & -(q-1) q^{5/2} (q+1)^2 & 0 & 0 & (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} & 0 & 0 & -q^{3/2} (q+1) \left(q^3-1\right) & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 \\ |
|||
0 & 0 & 0 & q^6 & 0 & 0 & q^{11/2}-q^{13/2} & 0 & 0 & (q-1)^2 q^4 (q+1) & 0 & 0 & -(q-1)^3 q^{3/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} & 0 & 0 & q^{7/2}-q^{11/2} & 0 & 0 & q^{13/2}-q^{9/2}-q^{7/2}+q^{3/2} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3 & 0 & 0 & q^{3/2}-q^{9/2} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{3/2} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccccccccccccc} |
|||
\frac{1}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{q^3-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{q^5-q^3-q^2+1}{q^{13/2}} & 0 & 0 & \frac{q^2-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{15/2}} & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^5} & 0 & 0 & \frac{q-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 \\ |
|||
0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{13/2}} & 0 & 0 & \frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^9} & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{11/2}} & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{13/2}} & 0 & 0 & \frac{q^2-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 \\ |
|||
0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{17/2}} & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{13/2}} & 0 & 0 & \frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{9/2}} & 0 & 0 & \frac{1}{q^3} & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^3} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccc} |
|||
0 & 0 & 0 & \frac{1}{q^{3/4}} \\ |
|||
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ |
|||
0 & \sqrt[4]{q} & 0 & 0 \\ |
|||
q^{3/4} & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccc} |
|||
0 & 0 & 0 & \frac{1}{q^{3/4}} \\ |
|||
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ |
|||
0 & \sqrt[4]{q} & 0 & 0 \\ |
|||
q^{3/4} & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccc} |
|||
0 & 0 & 0 & \frac{1}{q^{3/4}} \\ |
|||
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ |
|||
0 & \sqrt[4]{q} & 0 & 0 \\ |
|||
q^{3/4} & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccc} |
|||
0 & 0 & 0 & \frac{1}{q^{3/4}} \\ |
|||
0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 \\ |
|||
0 & \sqrt[4]{q} & 0 & 0 \\ |
|||
q^{3/4} & 0 & 0 & 0 |
|||
\end{array} |
|||
\right)\right)\right]}{q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}}\right]</math> | |
|||
coloured_jones_4 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( |
|||
\begin{array}{ccccccccccccccccccccccccc} |
|||
q^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 \\ |
|||
0 & q^4 & 0 & 0 & 0 & q^2-q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & -q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^3 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & -(q-1) q^{7/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^6 & 0 & 0 & 0 & q^{9/2}-q^{15/2} & 0 & 0 & 0 & q^9-q^6-q^5+q^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^4 (q+1) \left(q^3-1\right) & 0 & 0 & 0 & q \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -(q-1) q^{7/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^3 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 \\ |
|||
0 & 0 & 0 & q^8 & 0 & 0 & 0 & q^7-q^9 & 0 & 0 & 0 & q^{10}-q^8-q^7+q^5 & 0 & 0 & 0 & -(q-1)^3 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & -(q-1) q^{11/2} (q+1)^2 & 0 & 0 & 0 & q^3 (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & -\frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{\sqrt{q}} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & -q^4 (q+1) \left(q^3-1\right) & 0 & 0 & 0 & q \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & -q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 \\ |
|||
0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & q^{19/2}-q^{21/2} & 0 & 0 & 0 & (q-1)^2 q^8 (q+1) & 0 & 0 & 0 & -(q-1)^3 q^{11/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & (q-1)^4 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & q^7-q^9 & 0 & 0 & 0 & q^{10}-q^8-q^7+q^5 & 0 & 0 & 0 & -(q-1)^3 q^2 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & q^{9/2}-q^{15/2} & 0 & 0 & 0 & q^9-q^6-q^5+q^2 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^4 & 0 & 0 & 0 & q^2-q^6 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^2 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccccccccccccccccccccccc} |
|||
\frac{1}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{q^4-1}{q^6} & 0 & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{q^7-q^4-q^3+1}{q^9} & 0 & 0 & 0 & \frac{q^3-1}{q^{13/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{11}} & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^8} & 0 & 0 & 0 & \frac{q^2-1}{q^7} & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{17/2}} & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^7} & 0 & 0 & 0 & \frac{q-1}{q^{15/2}} & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{q^5+q^4-q-1}{q^{17/2}} & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^8} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{29/2}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{10}} & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{15/2}} & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{11}} & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^8} & 0 & 0 & 0 & \frac{q^2-1}{q^7} & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{11}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{15}} & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{19/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{12}} & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^8} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^9} & 0 & 0 & 0 & \frac{q^3-1}{q^{13/2}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{27/2}} & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{11}} & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{17/2}} & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^6} & 0 & 0 & 0 & \frac{1}{q^4} & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^4} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^2} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccc} |
|||
0 & 0 & 0 & 0 & \frac{1}{q} \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ |
|||
0 & 0 & 1 & 0 & 0 \\ |
|||
0 & \sqrt{q} & 0 & 0 & 0 \\ |
|||
q & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccc} |
|||
0 & 0 & 0 & 0 & \frac{1}{q} \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ |
|||
0 & 0 & 1 & 0 & 0 \\ |
|||
0 & \sqrt{q} & 0 & 0 & 0 \\ |
|||
q & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccc} |
|||
0 & 0 & 0 & 0 & \frac{1}{q} \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ |
|||
0 & 0 & 1 & 0 & 0 \\ |
|||
0 & \sqrt{q} & 0 & 0 & 0 \\ |
|||
q & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccc} |
|||
0 & 0 & 0 & 0 & \frac{1}{q} \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 \\ |
|||
0 & 0 & 1 & 0 & 0 \\ |
|||
0 & \sqrt{q} & 0 & 0 & 0 \\ |
|||
q & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right)\right)\right]}{q^2+q+1+\frac{1}{q}+\frac{1}{q^2}}\right]</math> | |
|||
coloured_jones_5 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( |
|||
\begin{array}{cccccccccccccccccccccccccccccccccccc} |
|||
q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & q^5 & 0 & 0 & 0 & 0 & q^{5/2}-q^{15/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} & 0 & 0 & 0 & 0 & -q^{7/2} (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{9/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & -(q-1) q^{13/2} \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & q^{11/2}-q^{19/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & (q-1)^2 q^{3/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & -(q-1) q^{11/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & q (q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & q^{17/2}-q^{23/2} & 0 & 0 & 0 & 0 & q^{13}-q^{10}-q^9+q^6 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{15/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & q^{9/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^3 \left(q^2+q+1\right) \left(q^{13/4}+q^{9/4}+q^{5/4}+\sqrt[4]{q}\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & -(q-1) q^{13/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & q^3 (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 & -\frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17/2} & 0 & 0 & 0 & 0 & -q^{11/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & (q-1)^2 q^{3/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{9/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{27/2} & 0 & 0 & 0 & 0 & q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2} & 0 & 0 & 0 & 0 & -(q-1)^3 q^{13/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & -(q-1) q^{19/2} (q+1)^2 & 0 & 0 & 0 & 0 & q^7 (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & 0 & -q^{7/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & -q^{15/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & q^{9/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^3 \left(q^2+q+1\right) \left(q^{13/4}+q^{9/4}+q^{5/4}+\sqrt[4]{q}\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & -q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} & 0 & 0 & 0 & 0 & -q^{7/2} (q+1) \left(q^5-1\right) & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & q^{29/2}-q^{31/2} & 0 & 0 & 0 & 0 & (q-1)^2 q^{13} (q+1) & 0 & 0 & 0 & 0 & -(q-1)^3 q^{21/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^7 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & -(q-1)^5 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{25/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{27/2} & 0 & 0 & 0 & 0 & q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2} & 0 & 0 & 0 & 0 & -(q-1)^3 q^{13/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & (q-1)^4 q^{5/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & q^{17/2}-q^{23/2} & 0 & 0 & 0 & 0 & q^{13}-q^{10}-q^9+q^6 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} & 0 & 0 & 0 & 0 & q^{11/2}-q^{19/2} & 0 & 0 & 0 & 0 & q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^5 & 0 & 0 & 0 & 0 & q^{5/2}-q^{15/2} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{5/2} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccccccccccccccccccccccccccccccccc} |
|||
\frac{1}{q^{5/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{q^5-1}{q^{15/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{q^9-q^5-q^4+1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{17/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{11}} & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{19/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{35/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{13}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^{10}} & 0 & 0 & 0 & 0 & \frac{q-1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{13/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{21}} & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{31/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{12}} & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{17/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{45/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{16}} & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{11}} & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{19/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2}{q^{22}} & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{29/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{25/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{17/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{23/2}} & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{17/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^4+q^3+q^2+q+1\right)^2}{q^{39/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{21/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^{13/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{15/2}} & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^5} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/2}} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccc} |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ |
|||
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ |
|||
0 & q^{3/4} & 0 & 0 & 0 & 0 \\ |
|||
q^{5/4} & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccc} |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ |
|||
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ |
|||
0 & q^{3/4} & 0 & 0 & 0 & 0 \\ |
|||
q^{5/4} & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccc} |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ |
|||
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ |
|||
0 & q^{3/4} & 0 & 0 & 0 & 0 \\ |
|||
q^{5/4} & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccc} |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 \\ |
|||
0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 \\ |
|||
0 & q^{3/4} & 0 & 0 & 0 & 0 \\ |
|||
q^{5/4} & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right)\right)\right]}{q^{5/2}+q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}}\right]</math> | |
|||
coloured_jones_6 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( |
|||
\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc} |
|||
q^3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & q^6 & 0 & 0 & 0 & 0 & 0 & q^3-q^9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & 0 & -q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^6 \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{21/2} \left(q^5+q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^9 & 0 & 0 & 0 & 0 & 0 & q^{13/2}-q^{23/2} & 0 & 0 & 0 & 0 & 0 & q^{14}-q^9-q^8+q^3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^7 (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^8 \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{17/2} \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & q^3 (q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & q^{10}-q^{14} & 0 & 0 & 0 & 0 & 0 & q^{16}-q^{12}-q^{11}+q^7 & 0 & 0 & 0 & 0 & 0 & -q^3 \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2} & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^6 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -q^{3/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{17/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & q^4 (q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2 & 0 & 0 & 0 & 0 & 0 & -\frac{\left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^8 \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & q^{27/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & q^{18}-q^{15}-q^{14}+q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^{12} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^5 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{13} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{21/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & q^7 (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{5/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^9 \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^6 \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & q^{17}-q^{19} & 0 & 0 & 0 & 0 & 0 & q^{20}-q^{18}-q^{17}+q^{15} & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{12} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^8 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^3 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{29/2} (q+1)^2 & 0 & 0 & 0 & 0 & 0 & q^{12} (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & 0 & 0 & -q^{17/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & -\frac{(q-1)^5 (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right)}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & -q^{12} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^5 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & -q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2} & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^6 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -q^{3/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{10} & 0 & 0 & 0 & 0 & 0 & -q^7 (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 & 0 & 0 & 0 & 0 & 0 & -q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & q^{41/2}-q^{43/2} & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{19} (q+1) & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{33/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{13} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{17/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^6 q^3 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & q^{17}-q^{19} & 0 & 0 & 0 & 0 & 0 & q^{20}-q^{18}-q^{17}+q^{15} & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{12} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^8 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^3 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & q^{27/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & q^{18}-q^{15}-q^{14}+q^{11} & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & q^3 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & q^{10}-q^{14} & 0 & 0 & 0 & 0 & 0 & q^{16}-q^{12}-q^{11}+q^7 & 0 & 0 & 0 & 0 & 0 & -q^3 \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^9 & 0 & 0 & 0 & 0 & 0 & q^{13/2}-q^{23/2} & 0 & 0 & 0 & 0 & 0 & q^{14}-q^9-q^8+q^3 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 & 0 & 0 & 0 & 0 & 0 & q^3-q^9 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^3 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc} |
|||
\frac{1}{q^3} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{q^6-1}{q^9} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{24}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q-1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{q^7+q^6-q-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{13}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{17}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right)}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{22}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{22}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{27}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{31}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{47/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{13}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{27}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{15}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{17}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2}{q^{30}} & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^4+q^3+q^2+q+1\right)^2}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{13}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{26}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{22}} & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{11}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{13}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^5+q^4+q^3+q^2+q+1\right)^2}{q^{53/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{16}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{10}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7+q^6-q-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^8} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^6-1}{q^9} & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^9} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^6} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^3} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 1 & 0 & 0 & 0 \\ |
|||
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & q & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 1 & 0 & 0 & 0 \\ |
|||
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & q & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 1 & 0 & 0 & 0 \\ |
|||
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & q & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{ccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/2}} \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q} & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt{q}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 1 & 0 & 0 & 0 \\ |
|||
0 & 0 & \sqrt{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & q & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{3/2} & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right)\right)\right]}{q^3+q^2+q+1+\frac{1}{q}+\frac{1}{q^2}+\frac{1}{q^3}}\right]</math> | |
|||
coloured_jones_7 = <math>\textrm{Apart}\left[\frac{\textrm{Hold}\left[\textrm{REngine}\left(\textrm{MorseLink}(\textrm{MorseLink::Error: bad input}),\left( |
|||
\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc} |
|||
q^{7/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{28} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & q^7 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2}-q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{11/2} (q+1) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{22} & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{q^{31/2} \left(q^7-1\right)^2}{q-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2}-q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^4 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{21/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11/2} (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{25/2} \left(q^5+q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 (q+1) \left(q^4+q^2+1\right)^2 \left(q^7-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & 0 & q^{23/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{19}-q^{14}-q^{13}+q^8 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^7 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{3/2} \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 \sqrt{q} \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{23/2} \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^6 (q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{(q-1)^3 (q+1) \left(q^2-q+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{\sqrt{q}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11/2} (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2}-q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{17/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{13/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q \left(q^3+q^2+q+1\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{19/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{9/2} (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{16} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{25/2} \left(q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^8 (q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{13/2} \left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 \sqrt{q} \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{21/2} \left(q^3+q^2+q+1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^5 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^3+q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2}-q^{45/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{24}-q^{21}-q^{20}+q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{7/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{35/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{21/2} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{11/2} (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{q^3 \left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{q-1} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{31/2} \left(q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} (q+1) \left(q^5+q^3-q^2-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{15/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^2 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{(q-1)^5 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{9/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^2+q+1\right) \left(q^4-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{19/2} (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{9/2} (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{3/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{15} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} \left(q^2+q+1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^7 \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{3/2} \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{19/2} \left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{9/2} \left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{15/2} \left(q^2+q+1\right) \left(q^7-1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21/2} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{47/2} \left(q^2-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{37/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{29/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{19/2} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^3 q^{7/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{22} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{41/2} (q+1)^2 & 0 & 0 & 0 & 0 & 0 & 0 & q^{18} (q+1) \left(q^3-1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{29/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{10} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{9/2} (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{35/2} (q+1) \left(q^3-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} \left(q^3-1\right)^2 \left(q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{21/2} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{11/2} (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 & 0 & 0 & 0 & 0 & 0 & 0 & -\frac{q^3 \left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{q-1} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{11} \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{13/2} \left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q \left(q^3+q^2+q+1\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{29/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{23/2} (q+1) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2} \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{5/2} \left(q^3+q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{12} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^4 \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{19/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{11/2} (q+1) \left(q^7-1\right) & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{28} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1) q^{55/2} & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^2 q^{26} (q+1) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{47/2} (q+1) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{20} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{31/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^6 q^{10} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^7 q^{7/2} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{49/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{47/2} \left(q^2-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2} & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^3 q^{37/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^4 q^{29/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -(q-1)^5 q^{19/2} (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) & 0 & 0 & 0 & 0 & 0 & 0 & (q-1)^3 q^{7/2} (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21} & 0 & 0 & 0 & 0 & 0 & 0 & q^{39/2}-q^{45/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{24}-q^{21}-q^{20}+q^{17} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{27/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^9 \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & -q^{7/2} \left(q^3-1\right) \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{35/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{31/2}-q^{39/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2} & 0 & 0 & 0 & 0 & 0 & 0 & -q^{17/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} \left(q^4-1\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right) & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{14} & 0 & 0 & 0 & 0 & 0 & 0 & q^{23/2}-q^{33/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{19}-q^{14}-q^{13}+q^8 & 0 & 0 & 0 & 0 & 0 & 0 & -q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{21/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{15/2}-q^{27/2} & 0 & 0 & 0 & 0 & 0 & 0 & q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^7 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2}-q^{21/2} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & q^{7/2} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc} |
|||
\frac{1}{q^{7/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{q^7-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{q^{13}-q^7-q^6+1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^6-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{47/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right) \left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^7 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{25}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+q+1\right)}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1)}{q^{19}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q-1}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{28}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{(q+1) \left(q^7-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7+q^6-q-1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{29}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{(q-1) q^{31}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^6 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{37}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^4 \left(q^2+1\right) \left(q^2-q+1\right)^2 \left(q^2+q+1\right)^3 \left(q^4+q^3+q^2+q+1\right)}{q^{59/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{24}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)^2}{q^{19}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{22}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right) \left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 (q+1)^3 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right) \left(q^2+q+1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-q^3-q^2+1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^2-1}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^7-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{51/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{24}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^5 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{81/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right)^3 \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{32}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{51/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5+q^3-q^2-1\right)^2}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^2+q+1\right)^2}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^{3/2}-\frac{1}{q^{3/2}}\right) \left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)^2 \left(q^7-1\right)}{(q-1) q^{31}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 (q+1)^2 \left(q^2+1\right) \left(q^2-q+1\right) \left(q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right)^2 \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+q^2+q+1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^3-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{23}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(1-q^3\right) \left(1-q^4\right) \left(q^5-1\right)}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-q^4-q^3+1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^3-1}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{30}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{42}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+q+1\right) \left(q^8+2 q^6+q^5+2 q^4+q^3+2 q^2+1\right)^2}{q^{65/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^2+1\right)^2 \left(q^5-1\right)^2}{q^{25}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^3+q^2+q+1\right)^2}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^4 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1)^2 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2}{q^{57/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^2+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^4-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right)^2 \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{29}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-1\right)^3 \left(q^2+1\right)^2 \left(q^4+q^2+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+q+1\right) \left(q^3+q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{20}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5+q^4-q-1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{47/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^9-q^5-q^4+1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^4-1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{53/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{69/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 (q+1) \left(q^2-q+1\right)^2 \left(q^2+q+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)^2}{q^{83/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^9+q^7+q^5-q^4-q^2-1\right)^2}{q^{31}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^4+q^3+q^2+q+1\right)^2}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{16}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^2+q+1\right) \left(q^3+1\right)^2 \left(q^4+q^3+q^2+q+1\right)^2 \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{73/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^5-1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right)}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^5-1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^3 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right)^2 \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{63/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{24}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^5-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2-\frac{1}{q^2}\right) \left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{(q-1) q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^4+q^3+q^2+q+1\right)}{q^{41/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^5-1\right)}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^5-1\right) \left(q^6-1\right) \left(q^7-1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{11}-q^6-q^5+1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^5-1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^4+q^2+1\right)^2 \left(q^7-1\right)^2}{q^{39}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) \left(q^5+q^4+q^3+q^2+q+1\right)^2}{q^{55/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{18}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 (q+1) \left(q^4+q^2+1\right)^2 \left(q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{69/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^6-1\right)}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1)^2 \left(q^2+1\right) \left(q^4+q^3+q^2+q+1\right) \left(q^5+q^4+q^3+q^2+q+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{30}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q-1) (q+1)^2 \left(q^2+1\right) \left(q^4+q^2+1\right)}{q^{43/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{15}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+1\right) \left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{51/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right)^2 \left(q^4-q^3+q-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{27/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3-1\right)^2 \left(q^3+1\right) \left(q^6+q^5+q^4+q^3+q^2+q+1\right)}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7+q^6-q-1}{q^{31/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^{13}-q^7-q^6+1}{q^{33/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^6-1}{q^{25/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^7-1\right)^2}{(q-1) q^{69/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{22}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^5+q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{61/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{39/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^4+q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{53/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{17}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^3+q^2+q+1\right) \left(q^7-1\right)}{q^{45/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{\left(q^2+q+1\right) \left(q^7-1\right)}{q^{37/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{12}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{(q+1) \left(q^7-1\right)}{q^{29/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{19/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{q^7-1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^7} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{28}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{49/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{35/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{14}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{21/2}} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^7} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/2}} |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right),\left( |
|||
\begin{array}{cccccccc} |
|||
0 & 0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{7/4}} \\ |
|||
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{q^{5/4}} & 0 \\ |
|||
0 & 0 & 0 & 0 & 0 & \frac{1}{q^{3/4}} & 0 & 0 \\ |
|||
0 & 0 & 0 & 0 & \frac{1}{\sqrt[4]{q}} & 0 & 0 & 0 \\ |
|||
0 & 0 & 0 & \sqrt[4]{q} & 0 & 0 & 0 & 0 \\ |
|||
0 & 0 & q^{3/4} & 0 & 0 & 0 & 0 & 0 \\ |
|||
0 & q^{5/4} & 0 & 0 & 0 & 0 & 0 & 0 \\ |
|||
q^{7/4} & 0 & 0 & 0 & 0 & 0 & 0 & 0 |
|||
\end{array} |
|||
\right)\right)\right]}{q^{7/2}+q^{5/2}+q^{3/2}+\sqrt{q}+\frac{1}{\sqrt{q}}+\frac{1}{q^{3/2}}+\frac{1}{q^{5/2}}+\frac{1}{q^{7/2}}}\right]</math> |
|||
}} |
}} |
Revision as of 05:09, 3 March 2013
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit &id= 5 1's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
An interlaced pentagram, this is known variously as the "Cinquefoil Knot", after certain herbs and shrubs of the rose family which have 5-lobed leaves and 5-petaled flowers (see e.g. [4]), as the "Pentafoil Knot" (visit Bert Jagers' pentafoil page), as the "Double Overhand Knot", as 5_1, or finally as the torus knot T(5,2). When taken off the post the strangle knot (hitch) of practical knot tying deforms to 5_1 |
This sentence was last edited by Dror. Sometime later, Scott added this sentence.
Knot presentations
Planar diagram presentation | X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
Gauss code | -1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
Dowker-Thistlethwaite code | 6 8 10 2 4 |
Conway Notation | [5] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||
Length is 5, width is 2, Braid index is 2 |
[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
[edit Notes on presentations of 5 1]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1627 X3849 X5,10,6,1 X7283 X9,4,10,5 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 4, -2, 5, -3, 1, -4, 2, -5, 3 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
6 8 10 2 4 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[5] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 2, 5, 2 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{7, 2}, {1, 3}, {2, 4}, {3, 5}, {4, 6}, {5, 7}, {6, 1}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 | |
8 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 | |
3,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
B3 Invariants.
Weight | Invariant |
---|---|
1,0,0 |
B4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
C3 Invariants.
Weight | Invariant |
---|---|
1,0,0 |
C4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 |
D4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
G2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 5, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {[[0_1]], [[K11n34]], [[K11n42]], }
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["5 1"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{[[0_1]], [[K11n34]], [[K11n42]], } |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (3, -5) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 5 1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: MathJax internal buffer size exceeded; is there a recursive macro call?"): {\displaystyle {\textrm {Apart}}\left[{\frac {{\textrm {Hold}}\left[{\textrm {REngine}}\left({\textrm {MorseLink}}({\textrm {MorseLink::Error:badinput}}),\left({\begin{array}{ccccccccccccccccccccccccc}q^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&q^{4}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0\\0&q^{4}&0&0&0&q^{2}-q^{6}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&q^{5}&0&0&0&-q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&-q^{3}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{7}&0&0&0&-(q-1)q^{7/2}\left(q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{8}&0&0&0\\0&0&q^{6}&0&0&0&q^{9/2}-q^{15/2}&0&0&0&q^{9}-q^{6}-q^{5}+q^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&q^{6}&0&0&0&-q^{4}(q+1)\left(q^{3}-1\right)&0&0&0&q\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&-(q-1)q^{7/2}\left(q^{2}+q+1\right)^{2}&0&0&0&(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&-q^{3}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0\\0&0&0&q^{8}&0&0&0&q^{7}-q^{9}&0&0&0&q^{10}-q^{8}-q^{7}+q^{5}&0&0&0&-(q-1)^{3}q^{2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&q^{7}&0&0&0&-(q-1)q^{11/2}(q+1)^{2}&0&0&0&q^{3}(q+1)\left(q^{3}-1\right)^{2}&0&0&0&-{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)}{\sqrt {q}}}&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&-q^{4}(q+1)\left(q^{3}-1\right)&0&0&0&q\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{5}&0&0&0&-q^{15/2}-q^{13/2}+q^{7/2}+q^{5/2}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{4}&0\\0&0&0&0&q^{10}&0&0&0&q^{19/2}-q^{21/2}&0&0&0&(q-1)^{2}q^{8}(q+1)&0&0&0&-(q-1)^{3}q^{11/2}(q+1)\left(q^{2}+q+1\right)&0&0&0&(q-1)^{4}q^{2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&q^{8}&0&0&0&q^{7}-q^{9}&0&0&0&q^{10}-q^{8}-q^{7}+q^{5}&0&0&0&-(q-1)^{3}q^{2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&q^{9/2}-q^{15/2}&0&0&0&q^{9}-q^{6}-q^{5}+q^{2}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{4}&0&0&0&q^{2}-q^{6}&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{2}\end{array}}\right),\left({\begin{array}{ccccccccccccccccccccccccc}{\frac {1}{q^{2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&{\frac {q^{4}-1}{q^{6}}}&0&0&0&{\frac {1}{q^{4}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{9}}}&0&0&0&{\frac {q^{3}-1}{q^{13/2}}}&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{11}}}&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{8}}}&0&0&0&{\frac {q^{2}-1}{q^{7}}}&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{12}}}&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}{q^{17/2}}}&0&0&0&{\frac {(q-1)^{2}(q+1)}{q^{7}}}&0&0&0&{\frac {q-1}{q^{15/2}}}&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0\\0&{\frac {1}{q^{4}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{5}+q^{4}-q-1}{q^{17/2}}}&0&0&0&{\frac {1}{q^{5}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{12}}}&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{8}}}&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)}{q^{29/2}}}&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)^{2}}{q^{10}}}&0&0&0&{\frac {(q-1)(q+1)^{2}}{q^{15/2}}}&0&0&0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{11}}}&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{8}}}&0&0&0&{\frac {q^{2}-1}{q^{7}}}&0&0&0&{\frac {1}{q^{8}}}&0&0&0\\0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{11}}}&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}}{q^{15}}}&0&0&0&{\frac {(q-1)\left(q^{2}+q+1\right)^{2}}{q^{19/2}}}&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{12}}}&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{8}}}&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{9}}}&0&0&0&{\frac {q^{3}-1}{q^{13/2}}}&0&0&0&{\frac {1}{q^{6}}}&0&0\\0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q-1)\left(q^{3}+q^{2}+q+1\right)^{2}}{q^{27/2}}}&0&0&0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{11}}}&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{17/2}}}&0&0&0&{\frac {1}{q^{5}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{4}-1}{q^{6}}}&0&0&0&{\frac {1}{q^{4}}}&0\\0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{4}}}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{2}}}\end{array}}\right),\left({\begin{array}{ccccc}0&0&0&0&{\frac {1}{q}}\\0&0&0&{\frac {1}{\sqrt {q}}}&0\\0&0&1&0&0\\0&{\sqrt {q}}&0&0&0\\q&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccc}0&0&0&0&{\frac {1}{q}}\\0&0&0&{\frac {1}{\sqrt {q}}}&0\\0&0&1&0&0\\0&{\sqrt {q}}&0&0&0\\q&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccc}0&0&0&0&{\frac {1}{q}}\\0&0&0&{\frac {1}{\sqrt {q}}}&0\\0&0&1&0&0\\0&{\sqrt {q}}&0&0&0\\q&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccc}0&0&0&0&{\frac {1}{q}}\\0&0&0&{\frac {1}{\sqrt {q}}}&0\\0&0&1&0&0\\0&{\sqrt {q}}&0&0&0\\q&0&0&0&0\end{array}}\right)\right)\right]}{q^{2}+q+1+{\frac {1}{q}}+{\frac {1}{q^{2}}}}}\right]} |
5 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: MathJax internal buffer size exceeded; is there a recursive macro call?"): {\displaystyle {\textrm {Apart}}\left[{\frac {{\textrm {Hold}}\left[{\textrm {REngine}}\left({\textrm {MorseLink}}({\textrm {MorseLink::Error:badinput}}),\left({\begin{array}{cccccccccccccccccccccccccccccccccccc}q^{5/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&q^{5}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&q^{15/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{25/2}&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0\\0&q^{5}&0&0&0&0&q^{5/2}-q^{15/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&q^{13/2}&0&0&0&0&-q^{7/2}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&-q^{9/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&-q^{11/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{11}&0&0&0&0&-(q-1)q^{13/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{25/2}&0&0&0&0\\0&0&q^{15/2}&0&0&0&0&q^{11/2}-q^{19/2}&0&0&0&0&q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&-q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2}&0&0&0&0&(q-1)^{2}q^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17/2}&0&0&0&0&-q^{11/2}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&(q-1)^{2}q^{3/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0&0&0&-(q-1)q^{11/2}\left(q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&q(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&-q^{11/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0\\0&0&0&q^{10}&0&0&0&0&q^{17/2}-q^{23/2}&0&0&0&0&q^{13}-q^{10}-q^{9}+q^{6}&0&0&0&0&-q^{5/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&-q^{15/2}(q+1)\left(q^{3}-1\right)&0&0&0&0&q^{9/2}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&-(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{13/4}+q^{9/4}+q^{5/4}+{\sqrt[{4}]{q}}\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0&0&0&-(q-1)q^{13/2}\left(q^{2}+q+1\right)^{2}&0&0&0&0&q^{3}(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}&0&0&0&0&-{\frac {(q-1)^{3}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{3/2}}}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17/2}&0&0&0&0&-q^{11/2}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&(q-1)^{2}q^{3/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&-q^{9/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15/2}&0&0\\0&0&0&0&q^{25/2}&0&0&0&0&q^{23/2}-q^{27/2}&0&0&0&0&q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2}&0&0&0&0&-(q-1)^{3}q^{13/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&(q-1)^{4}q^{5/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&q^{11}&0&0&0&0&-(q-1)q^{19/2}(q+1)^{2}&0&0&0&0&q^{7}(q+1)\left(q^{3}-1\right)^{2}&0&0&0&0&-q^{7/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q}}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&-q^{15/2}(q+1)\left(q^{3}-1\right)&0&0&0&0&q^{9/2}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&-(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{13/4}+q^{9/4}+q^{5/4}+{\sqrt[{4}]{q}}\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&-q^{21/2}-q^{19/2}+q^{13/2}+q^{11/2}&0&0&0&0&(q-1)^{2}q^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{13/2}&0&0&0&0&-q^{7/2}(q+1)\left(q^{5}-1\right)&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{5}&0\\0&0&0&0&0&q^{15}&0&0&0&0&q^{29/2}-q^{31/2}&0&0&0&0&(q-1)^{2}q^{13}(q+1)&0&0&0&0&-(q-1)^{3}q^{21/2}(q+1)\left(q^{2}+q+1\right)&0&0&0&0&(q-1)^{4}q^{7}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&-(q-1)^{5}q^{5/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&q^{25/2}&0&0&0&0&q^{23/2}-q^{27/2}&0&0&0&0&q^{29/2}-q^{25/2}-q^{23/2}+q^{19/2}&0&0&0&0&-(q-1)^{3}q^{13/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&(q-1)^{4}q^{5/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&q^{17/2}-q^{23/2}&0&0&0&0&q^{13}-q^{10}-q^{9}+q^{6}&0&0&0&0&-q^{5/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15/2}&0&0&0&0&q^{11/2}-q^{19/2}&0&0&0&0&q^{23/2}-q^{15/2}-q^{13/2}+q^{5/2}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{5}&0&0&0&0&q^{5/2}-q^{15/2}&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{5/2}\end{array}}\right),\left({\begin{array}{cccccccccccccccccccccccccccccccccccc}{\frac {1}{q^{5/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&{\frac {q^{5}-1}{q^{15/2}}}&0&0&0&0&{\frac {1}{q^{5}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{23/2}}}&0&0&0&0&{\frac {q^{4}-1}{q^{17/2}}}&0&0&0&0&{\frac {1}{q^{15/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{29/2}}}&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{11}}}&0&0&0&0&{\frac {q^{3}-1}{q^{19/2}}}&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{33/2}}}&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{25/2}}}&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{21/2}}}&0&0&0&0&{\frac {q^{2}-1}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{25/2}}}&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{35/2}}}&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{13}}}&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}{q^{21/2}}}&0&0&0&0&{\frac {(q-1)^{2}(q+1)}{q^{10}}}&0&0&0&0&{\frac {q-1}{q^{23/2}}}&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0\\0&{\frac {1}{q^{5}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{13/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{27/2}}}&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{21}}}&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)}{q^{31/2}}}&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)^{2}}{q^{12}}}&0&0&0&0&{\frac {(q-1)(q+1)^{2}}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{11}}}&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{33/2}}}&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{25/2}}}&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{21/2}}}&0&0&0&0&{\frac {q^{2}-1}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{25/2}}}&0&0&0&0\\0&0&{\frac {1}{q^{15/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{27/2}}}&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{25/2}}}&0&0&0&0&{\frac {1}{q^{17/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{45/2}}}&0&0&0&0&{\frac {(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}}{q^{16}}}&0&0&0&0&{\frac {(q-1)\left(q^{2}+q+1\right)^{2}}{q^{23/2}}}&0&0&0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{27/2}}}&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{29/2}}}&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{11}}}&0&0&0&0&{\frac {q^{3}-1}{q^{19/2}}}&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0\\0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}}{q^{22}}}&0&0&0&0&{\frac {(q-1)\left(q^{3}+q^{2}+q+1\right)^{2}}{q^{29/2}}}&0&0&0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{25/2}}}&0&0&0&0&{\frac {1}{q^{17/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{23/2}}}&0&0&0&0&{\frac {q^{4}-1}{q^{17/2}}}&0&0&0&0&{\frac {1}{q^{15/2}}}&0&0\\0&0&0&0&{\frac {1}{q^{25/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{39/2}}}&0&0&0&0&{\frac {1}{q^{11}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{27/2}}}&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{21/2}}}&0&0&0&0&{\frac {1}{q^{13/2}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{5}-1}{q^{15/2}}}&0&0&0&0&{\frac {1}{q^{5}}}&0\\0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{25/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{15/2}}}&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{5}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{5/2}}}\end{array}}\right),\left({\begin{array}{cccccc}0&0&0&0&0&{\frac {1}{q^{5/4}}}\\0&0&0&0&{\frac {1}{q^{3/4}}}&0\\0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0\\0&0&{\sqrt[{4}]{q}}&0&0&0\\0&q^{3/4}&0&0&0&0\\q^{5/4}&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccc}0&0&0&0&0&{\frac {1}{q^{5/4}}}\\0&0&0&0&{\frac {1}{q^{3/4}}}&0\\0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0\\0&0&{\sqrt[{4}]{q}}&0&0&0\\0&q^{3/4}&0&0&0&0\\q^{5/4}&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccc}0&0&0&0&0&{\frac {1}{q^{5/4}}}\\0&0&0&0&{\frac {1}{q^{3/4}}}&0\\0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0\\0&0&{\sqrt[{4}]{q}}&0&0&0\\0&q^{3/4}&0&0&0&0\\q^{5/4}&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccc}0&0&0&0&0&{\frac {1}{q^{5/4}}}\\0&0&0&0&{\frac {1}{q^{3/4}}}&0\\0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0\\0&0&{\sqrt[{4}]{q}}&0&0&0\\0&q^{3/4}&0&0&0&0\\q^{5/4}&0&0&0&0&0\end{array}}\right)\right)\right]}{q^{5/2}+q^{3/2}+{\sqrt {q}}+{\frac {1}{\sqrt {q}}}+{\frac {1}{q^{3/2}}}+{\frac {1}{q^{5/2}}}}}\right]} |
6 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: MathJax internal buffer size exceeded; is there a recursive macro call?"): {\displaystyle {\textrm {Apart}}\left[{\frac {{\textrm {Hold}}\left[{\textrm {REngine}}\left({\textrm {MorseLink}}({\textrm {MorseLink::Error:badinput}}),\left({\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc}q^{3}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&q^{6}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0&0\\0&q^{6}&0&0&0&0&0&q^{3}-q^{9}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&0&-q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{6}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{15/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{9}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&-(q-1)q^{21/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0\\0&0&q^{9}&0&0&0&0&0&q^{13/2}-q^{23/2}&0&0&0&0&0&q^{14}-q^{9}-q^{8}+q^{3}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{7}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{8}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{13}&0&0&0&0&0&-(q-1)q^{17/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&q^{3}(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{9}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0\\0&0&0&q^{12}&0&0&0&0&0&q^{10}-q^{14}&0&0&0&0&0&q^{16}-q^{12}-q^{11}+q^{7}&0&0&0&0&0&-q^{3}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2}&0&0&0&0&0&(q-1)^{2}q^{6}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-q^{3/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{9}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&(q-1)^{2}q^{5}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-(q-1)q^{17/2}\left(q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&q^{4}(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}&0&0&0&0&0&-{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}}{q^{3/2}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{8}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{15/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0\\0&0&0&0&q^{15}&0&0&0&0&0&q^{27/2}-q^{33/2}&0&0&0&0&0&q^{18}-q^{15}-q^{14}+q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{12}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&q^{9}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}q^{5}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{13}&0&0&0&0&0&-(q-1)q^{21/2}\left(q^{2}+q+1\right)^{2}&0&0&0&0&0&q^{7}(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}&0&0&0&0&0&-(q-1)^{3}q^{5/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{3}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{9}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&(q-1)^{2}q^{5}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{6}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0\\0&0&0&0&0&q^{18}&0&0&0&0&0&q^{17}-q^{19}&0&0&0&0&0&q^{20}-q^{18}-q^{17}+q^{15}&0&0&0&0&0&-(q-1)^{3}q^{12}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{8}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{5}q^{3}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&-(q-1)q^{29/2}(q+1)^{2}&0&0&0&0&0&q^{12}(q+1)\left(q^{3}-1\right)^{2}&0&0&0&0&0&-q^{17/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&-{\frac {(q-1)^{5}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{3/2}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&-q^{12}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&q^{9}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{3}q^{5}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&-q^{29/2}-q^{27/2}+q^{21/2}+q^{19/2}&0&0&0&0&0&(q-1)^{2}q^{6}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-q^{3/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{10}&0&0&0&0&0&-q^{7}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{8}&0&0&0&0&0&-q^{23/2}-q^{21/2}+q^{11/2}+q^{9/2}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0\\0&0&0&0&0&0&q^{21}&0&0&0&0&0&q^{41/2}-q^{43/2}&0&0&0&0&0&(q-1)^{2}q^{19}(q+1)&0&0&0&0&0&-(q-1)^{3}q^{33/2}(q+1)\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{13}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{5}q^{17/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{6}q^{3}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&q^{17}-q^{19}&0&0&0&0&0&q^{20}-q^{18}-q^{17}+q^{15}&0&0&0&0&0&-(q-1)^{3}q^{12}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&(q-1)^{4}q^{8}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&-(q-1)^{5}q^{3}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&q^{27/2}-q^{33/2}&0&0&0&0&0&q^{18}-q^{15}-q^{14}+q^{11}&0&0&0&0&0&-q^{15/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&q^{3}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&q^{10}-q^{14}&0&0&0&0&0&q^{16}-q^{12}-q^{11}+q^{7}&0&0&0&0&0&-q^{3}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{9}&0&0&0&0&0&q^{13/2}-q^{23/2}&0&0&0&0&0&q^{14}-q^{9}-q^{8}+q^{3}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{6}&0&0&0&0&0&q^{3}-q^{9}&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{3}\end{array}}\right),\left({\begin{array}{ccccccccccccccccccccccccccccccccccccccccccccccccc}{\frac {1}{q^{3}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&{\frac {q^{6}-1}{q^{9}}}&0&0&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{5}-1}{q^{21/2}}}&0&0&0&0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{4}-1}{q^{12}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{21}}}&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{3}-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{23}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{2}-1}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{24}}}&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}{q^{27/2}}}&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)}{q^{14}}}&0&0&0&0&0&{\frac {q-1}{q^{33/2}}}&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0\\0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{7}+q^{6}-q-1}{q^{25/2}}}&0&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{13}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{17}}}&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{26}}}&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{16}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{14}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{57/2}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{22}}}&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)}{q^{35/2}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)^{2}}{q^{15}}}&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}}{q^{29/2}}}&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{23}}}&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{15}}}&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{2}-1}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0\\0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{22}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{31/2}}}&0&0&0&0&0&{\frac {1}{q^{11}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{27}}}&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{31}}}&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{47/2}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}}{q^{18}}}&0&0&0&0&0&{\frac {(q-1)\left(q^{2}+q+1\right)^{2}}{q^{29/2}}}&0&0&0&0&0&{\frac {1}{q^{13}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{26}}}&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{16}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{14}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{21}}}&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{3}-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0\\0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{39/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{26}}}&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{18}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}}{q^{63/2}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}}{q^{23}}}&0&0&0&0&0&{\frac {(q-1)\left(q^{3}+q^{2}+q+1\right)^{2}}{q^{33/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{27}}}&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{15}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{17}}}&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{27/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{4}-1}{q^{12}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0\\0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}}{q^{30}}}&0&0&0&0&0&{\frac {(q-1)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{41/2}}}&0&0&0&0&0&{\frac {1}{q^{13}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{26}}}&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{18}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{22}}}&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{31/2}}}&0&0&0&0&0&{\frac {1}{q^{11}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{13}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{14}}}&0&0&0&0&0&{\frac {q^{5}-1}{q^{21/2}}}&0&0&0&0&0&{\frac {1}{q^{9}}}&0&0\\0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{53/2}}}&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{39/2}}}&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{16}}}&0&0&0&0&0&{\frac {1}{q^{10}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{7}+q^{6}-q-1}{q^{25/2}}}&0&0&0&0&0&{\frac {1}{q^{8}}}&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{6}-1}{q^{9}}}&0&0&0&0&0&{\frac {1}{q^{6}}}&0\\0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{9}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{6}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{3}}}\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{ccccccc}0&0&0&0&0&0&{\frac {1}{q^{3/2}}}\\0&0&0&0&0&{\frac {1}{q}}&0\\0&0&0&0&{\frac {1}{\sqrt {q}}}&0&0\\0&0&0&1&0&0&0\\0&0&{\sqrt {q}}&0&0&0&0\\0&q&0&0&0&0&0\\q^{3/2}&0&0&0&0&0&0\end{array}}\right)\right)\right]}{q^{3}+q^{2}+q+1+{\frac {1}{q}}+{\frac {1}{q^{2}}}+{\frac {1}{q^{3}}}}}\right]} |
7 | Failed to parse (Conversion error. Server ("https://wikimedia.org/api/rest_") reported: "Cannot get mml. TeX parse error: MathJax internal buffer size exceeded; is there a recursive macro call?"): {\displaystyle {\textrm {Apart}}\left[{\frac {{\textrm {Hold}}\left[{\textrm {REngine}}\left({\textrm {MorseLink}}({\textrm {MorseLink::Error:badinput}}),\left({\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc}q^{7/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&q^{7}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{35/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{28}&0&0&0&0&0&0&0\\0&q^{7}&0&0&0&0&0&0&q^{7/2}-q^{21/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&0&0&-q^{11/2}(q+1)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{22}&0&0&0&0&0&0&-{\frac {q^{31/2}\left(q^{7}-1\right)^{2}}{q-1}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0\\0&0&q^{21/2}&0&0&0&0&0&0&q^{15/2}-q^{27/2}&0&0&0&0&0&0&q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2}&0&0&0&0&0&0&q^{4}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{27/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0&0&0&0&q^{9/2}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{21/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{5}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{11/2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&0&-(q-1)q^{25/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{6}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{7}-1\right)^{2}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0\\0&0&0&q^{14}&0&0&0&0&0&0&q^{23/2}-q^{33/2}&0&0&0&0&0&0&q^{19}-q^{14}-q^{13}+q^{8}&0&0&0&0&0&0&-q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{23/2}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{15/2}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{5/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{23/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{7}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{3/2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{31/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{13/2}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}{\sqrt {q}}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&0&-(q-1)q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{6}(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}&0&0&0&0&0&0&-{\frac {(q-1)^{3}(q+1)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{\sqrt {q}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{11/2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{23/2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{35/2}&0&0&0&0\\0&0&0&0&q^{35/2}&0&0&0&0&0&0&q^{31/2}-q^{39/2}&0&0&0&0&0&0&q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2}&0&0&0&0&0&0&-q^{17/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&q^{7/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2}&0&0&0&0&0&0&(q-1)^{2}q^{11}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{13/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&q\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{19/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{9/2}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{3/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{16}&0&0&0&0&0&0&-(q-1)q^{25/2}\left(q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{8}(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}&0&0&0&0&0&0&-q^{5/2}\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{4}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{31/2}&0&0&0&0&0&0&-q^{23/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{13/2}\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}{\sqrt {q}}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{21/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{5}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0\\0&0&0&0&0&q^{21}&0&0&0&0&0&0&q^{39/2}-q^{45/2}&0&0&0&0&0&0&q^{24}-q^{21}-q^{20}+q^{17}&0&0&0&0&0&0&-q^{27/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{9}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&-q^{7/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{35/2}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&0&q^{29/2}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{21/2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{11/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-{\frac {q^{3}\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{q-1}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{18}&0&0&0&0&0&0&-(q-1)q^{31/2}\left(q^{2}+q+1\right)^{2}&0&0&0&0&0&0&q^{12}(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}&0&0&0&0&0&0&-(q-1)^{3}q^{15/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&(q-1)^{4}q^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-{\frac {(q-1)^{5}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{9/2}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{33/2}&0&0&0&0&0&0&-q^{27/2}\left(q^{2}+q+1\right)\left(q^{4}-1\right)&0&0&0&0&0&0&(q-1)^{2}q^{19/2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{9/2}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{3/2}}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{15}&0&0&0&0&0&0&-q^{23/2}\left(q^{2}+q+1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{7}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{3/2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{27/2}&0&0&0&0&0&0&-q^{19/2}\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)&0&0&0&0&0&0&q^{9/2}\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{15/2}\left(q^{2}+q+1\right)\left(q^{7}-1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21/2}&0&0\\0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0&-q^{47/2}\left(q^{2}-1\right)&0&0&0&0&0&0&q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2}&0&0&0&0&0&0&-(q-1)^{3}q^{37/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{29/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{5}q^{19/2}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{3}q^{7/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{22}&0&0&0&0&0&0&-(q-1)q^{41/2}(q+1)^{2}&0&0&0&0&0&0&q^{18}(q+1)\left(q^{3}-1\right)^{2}&0&0&0&0&0&0&-q^{29/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{10}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-(q-1)^{5}q^{9/2}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{2}}}&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{39/2}&0&0&0&0&0&0&-q^{35/2}(q+1)\left(q^{3}-1\right)&0&0&0&0&0&0&q^{29/2}\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{3}q^{21/2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{11/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}&0&0&0&0&0&0&-{\frac {q^{3}\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{q-1}}&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{17}&0&0&0&0&0&0&-q^{39/2}-q^{37/2}+q^{31/2}+q^{29/2}&0&0&0&0&0&0&(q-1)^{2}q^{11}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{13/2}\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&q\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{29/2}&0&0&0&0&0&0&-q^{23/2}(q+1)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{15/2}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-q^{5/2}\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{12}&0&0&0&0&0&0&-q^{31/2}-q^{29/2}+q^{19/2}+q^{17/2}&0&0&0&0&0&0&q^{4}\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{19/2}&0&0&0&0&0&0&-q^{11/2}(q+1)\left(q^{7}-1\right)&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{7}&0\\0&0&0&0&0&0&0&q^{28}&0&0&0&0&0&0&-(q-1)q^{55/2}&0&0&0&0&0&0&(q-1)^{2}q^{26}(q+1)&0&0&0&0&0&0&-(q-1)^{3}q^{47/2}(q+1)\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{20}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{5}q^{31/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{6}q^{10}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{7}q^{7/2}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{49/2}&0&0&0&0&0&0&-q^{47/2}\left(q^{2}-1\right)&0&0&0&0&0&0&q^{53/2}-q^{49/2}-q^{47/2}+q^{43/2}&0&0&0&0&0&0&-(q-1)^{3}q^{37/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{4}q^{29/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&-(q-1)^{5}q^{19/2}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)&0&0&0&0&0&0&(q-1)^{3}q^{7/2}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21}&0&0&0&0&0&0&q^{39/2}-q^{45/2}&0&0&0&0&0&0&q^{24}-q^{21}-q^{20}+q^{17}&0&0&0&0&0&0&-q^{27/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)&0&0&0&0&0&0&q^{9}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&-q^{7/2}\left(q^{3}-1\right)\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{35/2}&0&0&0&0&0&0&q^{31/2}-q^{39/2}&0&0&0&0&0&0&q^{43/2}-q^{35/2}-q^{33/2}+q^{25/2}&0&0&0&0&0&0&-q^{17/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)&0&0&0&0&0&0&q^{7/2}\left(q^{4}-1\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{14}&0&0&0&0&0&0&q^{23/2}-q^{33/2}&0&0&0&0&0&0&q^{19}-q^{14}-q^{13}+q^{8}&0&0&0&0&0&0&-q^{43/2}+q^{33/2}+q^{31/2}+q^{29/2}-q^{21/2}-q^{19/2}-q^{17/2}+q^{7/2}&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{21/2}&0&0&0&0&0&0&q^{15/2}-q^{27/2}&0&0&0&0&0&0&q^{33/2}-q^{21/2}-q^{19/2}+q^{7/2}&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{7}&0&0&0&0&0&0&q^{7/2}-q^{21/2}&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&q^{7/2}\end{array}}\right),\left({\begin{array}{cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc}{\frac {1}{q^{7/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&{\frac {q^{7}-1}{q^{21/2}}}&0&0&0&0&0&0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {q^{13}-q^{7}-q^{6}+1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {q^{6}-1}{q^{25/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{17}}}&0&0&0&0&0&0&{\frac {q^{5}-1}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{47/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {q^{4}-1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{57/2}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{18}}}&0&0&0&0&0&0&{\frac {q^{3}-1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{2}-1}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{7}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{63/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{25}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{18}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+q+1\right)}{q^{35/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)}{q^{19}}}&0&0&0&0&0&0&{\frac {q-1}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{28}}}&0&0&0&0&0&0&0\\0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&{\frac {(q+1)\left(q^{7}-1\right)}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{21}}}&0&0&0&0&0&0&{\frac {q^{7}+q^{6}-q-1}{q^{31/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{49/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{29}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{(q-1)q^{31}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{55/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{6}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{37}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{4}\left(q^{2}+1\right)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)^{3}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{59/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{24}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)^{2}}{q^{19}}}&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}}{q^{39/2}}}&0&0&0&0&0&0&{\frac {1}{q^{22}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{5}(q+1)^{3}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}+q+1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{5}-q^{3}-q^{2}+1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{2}-1}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0\\0&0&{\frac {1}{q^{21/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{51/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{27/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{63/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{24}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{57/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{5}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{81/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)^{3}\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{32}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{51/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{5}+q^{3}-q^{2}-1\right)^{2}}{q^{21}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{2}+q+1\right)^{2}}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3/2}-{\frac {1}{q^{3/2}}}\right)\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)^{2}\left(q^{7}-1\right)}{(q-1)q^{31}}}&0&0&0&0&0&0&{\frac {(q-1)^{4}(q+1)^{2}\left(q^{2}+1\right)\left(q^{2}-q+1\right)\left(q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{55/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+q^{2}+q+1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{3}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{57/2}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{23}}}&0&0&0&0&0&0&{\frac {\left(1-q^{3}\right)\left(1-q^{4}\right)\left(q^{5}-1\right)}{q^{39/2}}}&0&0&0&0&0&0&{\frac {q^{7}-q^{4}-q^{3}+1}{q^{18}}}&0&0&0&0&0&0&{\frac {q^{3}-1}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0\\0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{30}}}&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{55/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{31/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{42}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+q+1\right)\left(q^{8}+2q^{6}+q^{5}+2q^{4}+q^{3}+2q^{2}+1\right)^{2}}{q^{65/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{2}+1\right)^{2}\left(q^{5}-1\right)^{2}}{q^{25}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{3}+q^{2}+q+1\right)^{2}}{q^{39/2}}}&0&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{4}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)^{2}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{57/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{2}+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{4}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)^{2}\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{29}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-1\right)^{3}\left(q^{2}+1\right)^{2}\left(q^{4}+q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+q+1\right)\left(q^{3}+q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{20}}}&0&0&0&0&0&0&{\frac {q^{5}+q^{4}-q-1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{47/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {q^{9}-q^{5}-q^{4}+1}{q^{35/2}}}&0&0&0&0&0&0&{\frac {q^{4}-1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0\\0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{53/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{69/2}}}&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q-1)^{3}(q+1)\left(q^{2}-q+1\right)^{2}\left(q^{2}+q+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{83/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{9}+q^{7}+q^{5}-q^{4}-q^{2}-1\right)^{2}}{q^{31}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{16}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{2}+q+1\right)\left(q^{3}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{73/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{5}-1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{55/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {1}{q^{31/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{3}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)^{2}\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{63/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{24}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{5}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}-{\frac {1}{q^{2}}}\right)\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{(q-1)q^{49/2}}}&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)}{q^{41/2}}}&0&0&0&0&0&0&{\frac {(q+1)\left(q^{5}-1\right)}{q^{33/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{5}-1\right)\left(q^{6}-1\right)\left(q^{7}-1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {q^{11}-q^{6}-q^{5}+1}{q^{17}}}&0&0&0&0&0&0&{\frac {q^{5}-1}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0\\0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&{\frac {\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{7}-1\right)^{2}}{q^{39}}}&0&0&0&0&0&0&{\frac {(q-1)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)^{2}}{q^{55/2}}}&0&0&0&0&0&0&{\frac {1}{q^{18}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{2}(q+1)\left(q^{4}+q^{2}+1\right)^{2}\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{69/2}}}&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}-1\right)}{q^{49/2}}}&0&0&0&0&0&0&{\frac {1}{q^{33/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q-1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{30}}}&0&0&0&0&0&0&{\frac {(q-1)(q+1)^{2}\left(q^{2}+1\right)\left(q^{4}+q^{2}+1\right)}{q^{43/2}}}&0&0&0&0&0&0&{\frac {1}{q^{15}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+1\right)\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{51/2}}}&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)^{2}\left(q^{4}-q^{3}+q-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{27/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}-1\right)^{2}\left(q^{3}+1\right)\left(q^{6}+q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)}{q^{21}}}&0&0&0&0&0&0&{\frac {q^{7}+q^{6}-q-1}{q^{31/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{13}-q^{7}-q^{6}+1}{q^{33/2}}}&0&0&0&0&0&0&{\frac {q^{6}-1}{q^{25/2}}}&0&0&0&0&0&0&{\frac {1}{q^{21/2}}}&0&0\\0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&{\frac {\left(q^{7}-1\right)^{2}}{(q-1)q^{69/2}}}&0&0&0&0&0&0&{\frac {1}{q^{22}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{5}+q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{61/2}}}&0&0&0&0&0&0&{\frac {1}{q^{39/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{4}+q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{53/2}}}&0&0&0&0&0&0&{\frac {1}{q^{17}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{3}+q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{45/2}}}&0&0&0&0&0&0&{\frac {1}{q^{29/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {\left(q^{2}+q+1\right)\left(q^{7}-1\right)}{q^{37/2}}}&0&0&0&0&0&0&{\frac {1}{q^{12}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {(q+1)\left(q^{7}-1\right)}{q^{29/2}}}&0&0&0&0&0&0&{\frac {1}{q^{19/2}}}&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {q^{7}-1}{q^{21/2}}}&0&0&0&0&0&0&{\frac {1}{q^{7}}}&0\\0&0&0&0&0&0&0&{\frac {1}{q^{28}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{49/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{21}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{35/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{14}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{21/2}}}&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{7}}}&0&0&0&0&0&0&0&0\\0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&0&{\frac {1}{q^{7/2}}}\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right),\left({\begin{array}{cccccccc}0&0&0&0&0&0&0&{\frac {1}{q^{7/4}}}\\0&0&0&0&0&0&{\frac {1}{q^{5/4}}}&0\\0&0&0&0&0&{\frac {1}{q^{3/4}}}&0&0\\0&0&0&0&{\frac {1}{\sqrt[{4}]{q}}}&0&0&0\\0&0&0&{\sqrt[{4}]{q}}&0&0&0&0\\0&0&q^{3/4}&0&0&0&0&0\\0&q^{5/4}&0&0&0&0&0&0\\q^{7/4}&0&0&0&0&0&0&0\end{array}}\right)\right)\right]}{q^{7/2}+q^{5/2}+q^{3/2}+{\sqrt {q}}+{\frac {1}{\sqrt {q}}}+{\frac {1}{q^{3/2}}}+{\frac {1}{q^{5/2}}}+{\frac {1}{q^{7/2}}}}}\right]} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|