Torus Knot Splice Base: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
<span id="top"></span> |
<span id="top"></span> |
||
{{Knot Navigation Links|prev=<*PreviousKnot*> |
{{Knot Navigation Links|prev=<*PreviousKnot*>|next=<*NextKnot*>|imageext=jpg}} |
||
{| align=left |
|||
⚫ | |||
|- valign=top |
|||
|[[Image:<*ThisKnot*>.jpg]] |
|||
⚫ | |||
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/<*m*>.<*n*>.html <*ThisKnot*>'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
Visit [http://www.math.toronto.edu/~drorbn/KAtlas/TorusKnots/<*m*>.<*n*>.html <*ThisKnot*>'s page] at the original [http://www.math.toronto.edu/~drorbn/KAtlas/index.html Knot Atlas]! |
||
{{<*ThisKnot*> Quick Notes}} |
|||
|} |
|||
{{<*ThisKnot*> Further Notes and Views}} |
|||
===Knot presentations=== |
===Knot presentations=== |
||
Line 35: | Line 44: | ||
|} |
|} |
||
===[[Khovanov Homology]]=== |
|||
⚫ | |||
⚫ | The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math><*s=KnotSignature[K]*> is the signature of <*ThisKnot*>. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>. |
||
<center><*TabularKh[Kh[K][q, t], s+{1,-1}]*></center> |
<center><*TabularKh[Kh[K][q, t], s+{1,-1}]*></center> |
Revision as of 21:30, 26 August 2005
[[Image:Data:Torus Knot Splice Base/Previous Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Previous Knot]] |
[[Image:Data:Torus Knot Splice Base/Next Knot.{{{ext}}}|80px|link=Data:Torus Knot Splice Base/Next Knot]] |
[[Image:<*ThisKnot*>.jpg]] | Visit [<*KnotilusURL[K]<>" "<>ThisKnot*>'s page] at Knotilus!
Visit <*m*>.<*n*>.html <*ThisKnot*>'s page at the original Knot Atlas! {{<*ThisKnot*> Quick Notes}} |
{{<*ThisKnot*> Further Notes and Views}}
Knot presentations
Planar diagram presentation | <*PD[K]*> |
Gauss code | <*List @@ GaussCode[K]*> |
Dowker-Thistlethwaite code | <*StringReplace[StringTake[ToString[DTCode[K]], {8, -2}], ","->""]*> |
Polynomial invariants
Polynomial invariants
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["Torus Knot Splice Base"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Data:Torus Knot Splice Base/Alexander Polynomial |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Data:Torus Knot Splice Base/Conway Polynomial |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Data:Torus Knot Splice Base/2nd AlexanderIdeal |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ Data:Torus Knot Splice Base/Determinant, Data:Torus Knot Splice Base/Signature } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Data:Torus Knot Splice Base/Jones Polynomial |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Data:Torus Knot Splice Base/HOMFLYPT Polynomial |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Data:Torus Knot Splice Base/Kauffman Polynomial |
Vassiliev invariants
V2 and V3 | <*{Vassiliev[2][K], Vassiliev[3][K]}*>) |
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where <*s=KnotSignature[K]*> is the signature of <*ThisKnot*>. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
<*InOut["Crossings[``]", K]*> <*InOut["PD[``]", K]*> <*InOut["GaussCode[``]", K]*> <*InOut["BR[``]", K]*> <*InOut["alex = Alexander[``][t]", K]*> <*InOut["Conway[``][z]", K]*> <*InOut["Select[AllKnots[], (alex === Alexander[#][t])&]"]*> <*InOut["{KnotDet[`1`], KnotSignature[`1`]}", K]*> <*InOut["J=Jones[``][q]", K]*> <*InOut[
"Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]"
]*> <* If[Crossings[K]<=18, Include["ColouredJonesM.mhtml"] ,""] *> <*InOut["A2Invariant[``][q]", K]*> <*InOut["Kauffman[``][a, z]", K]*> <*InOut["{Vassiliev[2][`1`], Vassiliev[3][`1`]}", K ]*> <*InOut["Kh[``][q, t]", K]*>
In[1]:= |
<< KnotTheory` |
<*InOut[1]; KnotTheoryWelcomeMessage[]*> |