L6a1: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
{{Link Page Header|n= |
{{Link Page Header|n=6|t=<math>\textrm{If}[\textrm{AlternatingQ}(\textrm{Link}(6,\textrm{Alternating},1)),a,n]</math>|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-6:5,-1,3,-4,6,-2,4,-3/goTop.html}} |
||
<br style="clear:both" /> |
<br style="clear:both" /> |
||
Line 19: | Line 19: | ||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
{{Khovanov Homology|table=<table border=1> |
|||
{{Khovanov Homology|table=<math>\textrm{<table border=1>$\backslash $n<tr align=center>$\backslash $n<td width=40.$\%$><table cellpadding=0 cellspacing=0>$\backslash $n <tr><td>$\backslash \backslash $</td><td>$\&$nbsp;</td><td>r</td></tr>$\backslash $n<tr><td>$\&$nbsp;</td><td>$\&$nbsp;$\backslash \backslash \&$nbsp;</td><td>$\&$nbsp;</td></tr>$\backslash $n<tr><td>j</td><td>$\&$nbsp;</td><td>$\backslash \backslash $</td></tr>$\backslash $n</table></td>$\backslash $n <td width=20.$\%$>0</td ><td width=40.$\%$>$\&$chi;</td></tr>$\backslash $n<tr align=center><td>0</td>}\textrm{<>}\textrm{Which}[\textrm{$\$$Failed}[q,t]\neq 0,\textrm{<td bgcolor=red>}\textrm{<>}\textrm{ToString}[\textrm{c$\$$16963}]\textrm{<>}\textrm{</td>},\neg \textrm{critical$\$$16963}\land \textrm{c$\$$16963}=0,\textrm{<td>$\&$nbsp;</td>}]\textrm{<>}\textrm{<td>$\$$Failed[q, t]</td></tr>$\backslash $n</table>}</math>}} |
|||
<tr align=center> |
|||
<td width=18.1818%><table cellpadding=0 cellspacing=0> |
|||
<tr><td>\</td><td> </td><td>r</td></tr> |
|||
<tr><td> </td><td> \ </td><td> </td></tr> |
|||
<tr><td>j</td><td> </td><td>\</td></tr> |
|||
</table></td> |
|||
<td width=9.09091%>-4</td ><td width=9.09091%>-3</td ><td width=9.09091%>-2</td ><td width=9.09091%>-1</td ><td width=9.09091%>0</td ><td width=9.09091%>1</td ><td width=9.09091%>2</td ><td width=18.1818%>χ</td></tr> |
|||
<tr align=center><td>4</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td>1</td></tr> |
|||
<tr align=center><td>2</td><td> </td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td>-1</td></tr> |
|||
<tr align=center><td>0</td><td> </td><td> </td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-2</td><td> </td><td> </td><td> </td><td bgcolor=yellow>2</td><td bgcolor=yellow>2</td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-4</td><td> </td><td> </td><td bgcolor=yellow>1</td><td bgcolor=yellow> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
<tr align=center><td>-6</td><td> </td><td bgcolor=yellow> </td><td bgcolor=yellow>2</td><td> </td><td> </td><td> </td><td> </td><td>2</td></tr> |
|||
<tr align=center><td>-8</td><td bgcolor=yellow>1</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td>0</td></tr> |
|||
<tr align=center><td>-10</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>1</td></tr> |
|||
</table>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 29: | Line 45: | ||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 17, 2005, 14:44:34)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Link[6, Alternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>6</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Link[6, Alternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 8, 5, 7], X[8, 12, 9, 11], |
||
⚫ | |||
⚫ | |||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Link[6, Alternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Link[6, Alternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[Link[6, Alternating, 1]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Link[6, Alternating, 1]][t]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>ComplexInfinity</nowiki></pre></td></tr> |
||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[8]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Link[6, Alternating, 1]], KnotSignature[Link[6, Alternating, 1]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Infinity, -1}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>J=Jones[Link[6, Alternating, 1]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -(9/2) -(7/2) 3 2 2 3/2 |
||
- |
-q + q - ---- + ---- - ------- + 2 Sqrt[q] - q |
||
5/2 3/2 Sqrt[q] |
|||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{}</nowiki></pre></td></tr> |
||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Link[6, Alternating, 1]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 2 -12 2 2 -6 -4 -2 2 6 |
||
q + --- + q + --- + -- + q + q - q - q + q |
|||
⚫ | |||
14 10 8 |
|||
⚫ | |||
q q q</nowiki></pre></td></tr> |
|||
KnotTheory`Kauffman`StateValuation[I a, -I z][-] |
|||
⚫ | |||
⚫ | |||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 3 5 3 |
|||
⚫ | |||
4 a a z 3 5 2 2 2 z 5 3 4 |
|||
a - -- - -- + - + a z + 2 a z + 3 z + 3 a z - -- - a z - 2 z - |
|||
z z a a |
|||
⚫ | |||
KnotTheory`Kauffman`StateValuation[I a, -I z][Flatten[KnotTheory`Kauf\ |
|||
2 4 4 4 5 3 5 |
|||
3 a z - a z - a z - a z</nowiki></pre></td></tr> |
|||
⚫ | |||
⚫ | |||
{0, -(--)} |
|||
24</nowiki></pre></td></tr> |
|||
⚫ | |||
⚫ | |||
1 + Alternating + ---------------- + --------------- + |
|||
4 10 4 8 |
|||
Alternating q Alternating q |
|||
1 2 1 2 |
|||
KnotTheory`Kauffman`StateValuation[I a, -I z][{KnotTheory`Kauffman`St\ |
|||
⚫ | |||
3 8 2 6 2 4 2 |
|||
Alternating q Alternating q Alternating q q |
|||
2 2 2 4 |
|||
-------------- + Alternating q + Alternating q |
|||
⚫ | |||
2 |
|||
⚫ | |||
Alternating q</nowiki></pre></td></tr> |
|||
⚫ | |||
⚫ | |||
⚫ | |||
</table> |
</table> |
||
Revision as of 19:43, 28 August 2005
|
|
Visit L6a1's page at Knotilus!
Visit 1.html L6a1's page at the original Knot Atlas! | |
L6a1 is in the Rolfsen table of links. |
Knot presentations
Planar diagram presentation | X6172 X10,3,11,4 X12,8,5,7 X8,12,9,11 X2536 X4,9,1,10 |
Gauss code | {1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3} |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Vassiliev invariants
V2 and V3: | (0, ) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -1 is the signature of L6a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[6, Alternating, 1]] |
Out[2]= | 6 |
In[3]:= | PD[Link[6, Alternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 8, 5, 7], X[8, 12, 9, 11], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[6, Alternating, 1]] |
Out[4]= | GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}] |
In[5]:= | BR[Link[6, Alternating, 1]] |
Out[5]= | BR[Link[6, Alternating, 1]] |
In[6]:= | alex = Alexander[Link[6, Alternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[6, Alternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[6, Alternating, 1]], KnotSignature[Link[6, Alternating, 1]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[6, Alternating, 1]][q] |
Out[10]= | -(9/2) -(7/2) 3 2 2 3/2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[6, Alternating, 1]][q] |
Out[12]= | -16 2 -12 2 2 -6 -4 -2 2 6 |
In[13]:= | Kauffman[Link[6, Alternating, 1]][a, z] |
Out[13]= | 3 5 34 a a z 3 5 2 2 2 z 5 3 4 |
In[14]:= | {Vassiliev[2][Link[6, Alternating, 1]], Vassiliev[3][Link[6, Alternating, 1]]} |
Out[14]= | 53 |
In[15]:= | Kh[Link[6, Alternating, 1]][q, t] |
Out[15]= | 1 1 |