T(35,2): Difference between revisions

From Knot Atlas
Jump to navigationJump to search
No edit summary
No edit summary
Line 1: Line 1:
<!-- -->
<!-- -->
<!-- This knot page was produced from [[Torus Knots Splice Template]] -->

<!-- -->
<!-- -->
<!-- -->

<span id="top"></span>
<span id="top"></span>
<!-- -->

{{Knot Navigation Links|ext=jpg}}
{{Knot Navigation Links|ext=jpg}}


{{Torus Knot Page Header|m=35|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-26,27,-28,29,-30,31,-32,33,-34,35,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,34,-35,1,-2,3,-4,5,-6,7/goTop.html}}
{| align=left
|- valign=top
|[[Image:{{PAGENAME}}.jpg]]
|{{Torus Knot Site Links|m=35|n=2|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/-8,9,-10,11,-12,13,-14,15,-16,17,-18,19,-20,21,-22,23,-24,25,-26,27,-28,29,-30,31,-32,33,-34,35,-1,2,-3,4,-5,6,-7,8,-9,10,-11,12,-13,14,-15,16,-17,18,-19,20,-21,22,-23,24,-25,26,-27,28,-29,30,-31,32,-33,34,-35,1,-2,3,-4,5,-6,7/goTop.html}}

{{:{{PAGENAME}} Quick Notes}}
|}


<br style="clear:both" />
<br style="clear:both" />
Line 23: Line 17:
{{Vassiliev Invariants}}
{{Vassiliev Invariants}}


===[[Khovanov Homology]]===
{{Khovanov Homology|table=<table border=1>

The coefficients of the monomials <math>t^rq^j</math> are shown, along with their alternating sums <math>\chi</math> (fixed <math>j</math>, alternation over <math>r</math>). The squares with <font class=HLYellow>yellow</font> highlighting are those on the "critical diagonals", where <math>j-2r=s+1</math> or <math>j-2r=s+1</math>, where <math>s=</math>{{Data:{{PAGENAME}}/Signature}} is the signature of {{PAGENAME}}. Nonzero entries off the critical diagonals (if any exist) are highlighted in <font class=HLRed>red</font>.

<center><table border=1>
<tr align=center>
<tr align=center>
<td width=5.%><table cellpadding=0 cellspacing=0>
<td width=5.%><table cellpadding=0 cellspacing=0>
Line 72: Line 62:
<tr align=center><td>35</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>35</td><td bgcolor=yellow>1</td><td bgcolor=yellow>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>33</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
<tr align=center><td>33</td><td bgcolor=yellow>1</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>&nbsp;</td><td>1</td></tr>
</table></center>
</table>}}


{{Computer Talk Header}}
{{Computer Talk Header}}
Line 121: Line 111:
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr>
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[35, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[TorusKnot[35, 2]][t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 -16 -15 -14 -13 -12 -11 -10 -9
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -17 -16 -15
-1 + t - t + t - t + t - t + t - t + t -
-1 + Alternating - Alternating + Alternating -
-8 -7 -6 -5 -4 -3 -2 1 2 3 4 5
-14 -13 -12 -11
t + t - t + t - t + t - t + - + t - t + t - t + t -
Alternating + Alternating - Alternating + Alternating -
t
6 7 8 9 10 11 12 13 14 15 16 17
-10 -9 -8 -7
Alternating + Alternating - Alternating + Alternating -
t + t - t + t - t + t - t + t - t + t - t + t</nowiki></pre></td></tr>
-6 -5 -4 -3
Alternating + Alternating - Alternating + Alternating -
-2 1 2
Alternating + ----------- + Alternating - Alternating +
Alternating
3 4 5 6
Alternating - Alternating + Alternating - Alternating +
7 8 9 10
Alternating - Alternating + Alternating - Alternating +
11 12 13 14
Alternating - Alternating + Alternating - Alternating +
15 16 17
Alternating - Alternating + Alternating</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[35, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[TorusKnot[35, 2]][z]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 8 10
Line 165: Line 173:
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1785}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{0, 1785}</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[35, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[TorusKnot[35, 2]][q, t]</nowiki></pre></td></tr>
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 33 35 37 2 41 3 41 4 45 5 45 6 49 7
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]=&nbsp;&nbsp;</nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 33 35 2 37 3 41 4 41
q + q + q t + q t + q t + q t + q t + q t +
q + q + Alternating q + Alternating q + Alternating q +
5 45 6 45 7 49
Alternating q + Alternating q + Alternating q +
8 49 9 53 10 53
Alternating q + Alternating q + Alternating q +
11 57 12 57 13 61
Alternating q + Alternating q + Alternating q +
14 61 15 65 16 65
Alternating q + Alternating q + Alternating q +
17 69 18 69 19 73
Alternating q + Alternating q + Alternating q +
20 73 21 77 22 77
Alternating q + Alternating q + Alternating q +
23 81 24 81 25 85
Alternating q + Alternating q + Alternating q +
49 8 53 9 53 10 57 11 57 12 61 13 61 14
26 85 27 89 28 89
q t + q t + q t + q t + q t + q t + q t +
Alternating q + Alternating q + Alternating q +
65 15 65 16 69 17 69 18 73 19 73 20 77 21
29 93 30 93 31 97
q t + q t + q t + q t + q t + q t + q t +
Alternating q + Alternating q + Alternating q +
77 22 81 23 81 24 85 25 85 26 89 27 89 28
32 97 33 101 34 101
q t + q t + q t + q t + q t + q t + q t +
Alternating q + Alternating q + Alternating q +
93 29 93 30 97 31 97 32 101 33 101 34 105 35
35 105
q t + q t + q t + q t + q t + q t + q t</nowiki></pre></td></tr>
Alternating q</nowiki></pre></td></tr>
</table>
</table>


{{Category:Knot Page}}
[[Category:Knot Page]]

Revision as of 19:45, 28 August 2005

T(7,6).jpg

T(7,6)

T(9,5).jpg

T(9,5)

T(35,2).jpg Visit [[[:Template:KnotilusURL]] T(35,2)'s page] at Knotilus!

Visit T(35,2)'s page at the original Knot Atlas!

T(35,2) Quick Notes


T(35,2) Further Notes and Views

Knot presentations

Planar diagram presentation X29,65,30,64 X65,31,66,30 X31,67,32,66 X67,33,68,32 X33,69,34,68 X69,35,70,34 X35,1,36,70 X1,37,2,36 X37,3,38,2 X3,39,4,38 X39,5,40,4 X5,41,6,40 X41,7,42,6 X7,43,8,42 X43,9,44,8 X9,45,10,44 X45,11,46,10 X11,47,12,46 X47,13,48,12 X13,49,14,48 X49,15,50,14 X15,51,16,50 X51,17,52,16 X17,53,18,52 X53,19,54,18 X19,55,20,54 X55,21,56,20 X21,57,22,56 X57,23,58,22 X23,59,24,58 X59,25,60,24 X25,61,26,60 X61,27,62,26 X27,63,28,62 X63,29,64,28
Gauss code -8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -1, 2, -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, -35, 1, -2, 3, -4, 5, -6, 7
Dowker-Thistlethwaite code 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34
Conway Notation Data:T(35,2)/Conway Notation

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 35, 34 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:T(35,2)/QuantumInvariant/A2/1,0
The G2 invariant Data:T(35,2)/QuantumInvariant/G2/1,0

Vassiliev invariants

V2 and V3: (153, 1785)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
Data:T(35,2)/V 2,1 Data:T(35,2)/V 3,1 Data:T(35,2)/V 4,1 Data:T(35,2)/V 4,2 Data:T(35,2)/V 4,3 Data:T(35,2)/V 5,1 Data:T(35,2)/V 5,2 Data:T(35,2)/V 5,3 Data:T(35,2)/V 5,4 Data:T(35,2)/V 6,1 Data:T(35,2)/V 6,2 Data:T(35,2)/V 6,3 Data:T(35,2)/V 6,4 Data:T(35,2)/V 6,5 Data:T(35,2)/V 6,6 Data:T(35,2)/V 6,7 Data:T(35,2)/V 6,8 Data:T(35,2)/V 6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 34 is the signature of T(35,2). Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011121314151617181920212223242526272829303132333435χ
105                                   1-1
103                                    0
101                                 11 0
99                                    0
97                               11   0
95                                    0
93                             11     0
91                                    0
89                           11       0
87                                    0
85                         11         0
83                                    0
81                       11           0
79                                    0
77                     11             0
75                                    0
73                   11               0
71                                    0
69                 11                 0
67                                    0
65               11                   0
63                                    0
61             11                     0
59                                    0
57           11                       0
55                                    0
53         11                         0
51                                    0
49       11                           0
47                                    0
45     11                             0
43                                    0
41   11                               0
39                                    0
37  1                                 1
351                                   1
331                                   1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

In[1]:=    
<< KnotTheory`
Loading KnotTheory` (version of August 17, 2005, 14:44:34)...
In[2]:=
Crossings[TorusKnot[35, 2]]
Out[2]=  
35
In[3]:=
PD[TorusKnot[35, 2]]
Out[3]=  
PD[X[29, 65, 30, 64], X[65, 31, 66, 30], X[31, 67, 32, 66], 
 X[67, 33, 68, 32], X[33, 69, 34, 68], X[69, 35, 70, 34], 

 X[35, 1, 36, 70], X[1, 37, 2, 36], X[37, 3, 38, 2], X[3, 39, 4, 38], 

 X[39, 5, 40, 4], X[5, 41, 6, 40], X[41, 7, 42, 6], X[7, 43, 8, 42], 

 X[43, 9, 44, 8], X[9, 45, 10, 44], X[45, 11, 46, 10], 

 X[11, 47, 12, 46], X[47, 13, 48, 12], X[13, 49, 14, 48], 

 X[49, 15, 50, 14], X[15, 51, 16, 50], X[51, 17, 52, 16], 

 X[17, 53, 18, 52], X[53, 19, 54, 18], X[19, 55, 20, 54], 

 X[55, 21, 56, 20], X[21, 57, 22, 56], X[57, 23, 58, 22], 

 X[23, 59, 24, 58], X[59, 25, 60, 24], X[25, 61, 26, 60], 

X[61, 27, 62, 26], X[27, 63, 28, 62], X[63, 29, 64, 28]]
In[4]:=
GaussCode[TorusKnot[35, 2]]
Out[4]=  
GaussCode[-8, 9, -10, 11, -12, 13, -14, 15, -16, 17, -18, 19, -20, 21, 
 -22, 23, -24, 25, -26, 27, -28, 29, -30, 31, -32, 33, -34, 35, -1, 2, 

 -3, 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, 18, -19, 

 20, -21, 22, -23, 24, -25, 26, -27, 28, -29, 30, -31, 32, -33, 34, 

-35, 1, -2, 3, -4, 5, -6, 7]
In[5]:=
BR[TorusKnot[35, 2]]
Out[5]=  
BR[2, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
   1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}]
In[6]:=
alex = Alexander[TorusKnot[35, 2]][t]
Out[6]=  
                -17              -16              -15

-1 + Alternating - Alternating + Alternating -

            -14              -13              -12              -11
 Alternating    + Alternating    - Alternating    + Alternating    - 

            -10              -9              -8              -7
 Alternating    + Alternating   - Alternating   + Alternating   - 

            -6              -5              -4              -3
 Alternating   + Alternating   - Alternating   + Alternating   - 

            -2        1                                 2
 Alternating   + ----------- + Alternating - Alternating  + 
                 Alternating

            3              4              5              6
 Alternating  - Alternating  + Alternating  - Alternating  + 

            7              8              9              10
 Alternating  - Alternating  + Alternating  - Alternating   + 

            11              12              13              14
 Alternating   - Alternating   + Alternating   - Alternating   + 

            15              16              17
Alternating - Alternating + Alternating
In[7]:=
Conway[TorusKnot[35, 2]][z]
Out[7]=  
         2         4          6           8           10

1 + 153 z + 3876 z + 38760 z + 203490 z + 646646 z +

          12            14            16            18           20
 1352078 z   + 1961256 z   + 2042975 z   + 1562275 z   + 888030 z   + 

         22           24          26         28        30       32
 376740 z   + 118755 z   + 27405 z   + 4495 z   + 496 z   + 33 z   + 

  34
z
In[8]:=
Select[AllKnots[], (alex === Alexander[#][t])&]
Out[8]=  
{}
In[9]:=
{KnotDet[TorusKnot[35, 2]], KnotSignature[TorusKnot[35, 2]]}
Out[9]=  
{35, 34}
In[10]:=
J=Jones[TorusKnot[35, 2]][q]
Out[10]=  
 17    19    20    21    22    23    24    25    26    27    28    29

q + q - q + q - q + q - q + q - q + q - q + q -

  30    31    32    33    34    35    36    37    38    39    40
 q   + q   - q   + q   - q   + q   - q   + q   - q   + q   - q   + 

  41    42    43    44    45    46    47    48    49    50    51    52
q - q + q - q + q - q + q - q + q - q + q - q
In[11]:=
Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]
Out[11]=  
{}
In[12]:=
A2Invariant[TorusKnot[35, 2]][q]
Out[12]=  
NotAvailable
In[13]:=
Kauffman[TorusKnot[35, 2]][a, z]
Out[13]=  
NotAvailable
In[14]:=
{Vassiliev[2][TorusKnot[35, 2]], Vassiliev[3][TorusKnot[35, 2]]}
Out[14]=  
{0, 1785}
In[15]:=
Kh[TorusKnot[35, 2]][q, t]
Out[15]=  
 33    35              2  37              3  41              4  41

q + q + Alternating q + Alternating q + Alternating q +

            5  45              6  45              7  49
 Alternating  q   + Alternating  q   + Alternating  q   + 

            8  49              9  53              10  53
 Alternating  q   + Alternating  q   + Alternating   q   + 

            11  57              12  57              13  61
 Alternating   q   + Alternating   q   + Alternating   q   + 

            14  61              15  65              16  65
 Alternating   q   + Alternating   q   + Alternating   q   + 

            17  69              18  69              19  73
 Alternating   q   + Alternating   q   + Alternating   q   + 

            20  73              21  77              22  77
 Alternating   q   + Alternating   q   + Alternating   q   + 

            23  81              24  81              25  85
 Alternating   q   + Alternating   q   + Alternating   q   + 

            26  85              27  89              28  89
 Alternating   q   + Alternating   q   + Alternating   q   + 

            29  93              30  93              31  97
 Alternating   q   + Alternating   q   + Alternating   q   + 

            32  97              33  101              34  101
 Alternating   q   + Alternating   q    + Alternating   q    + 

            35  105
Alternating q