L6a1: Difference between revisions
From Knot Atlas
Jump to navigationJump to search
No edit summary |
No edit summary |
||
Line 9: | Line 9: | ||
{{Knot Navigation Links|ext=gif}} |
{{Knot Navigation Links|ext=gif}} |
||
{{Link Page Header|n=6|t= |
{{Link Page Header|n=6|t=a|k=1|KnotilusURL=http://srankin.math.uwo.ca/cgi-bin/retrieve.cgi/1,-5,2,-6:5,-1,3,-4,6,-2,4,-3/goTop.html}} |
||
<br style="clear:both" /> |
<br style="clear:both" /> |
Revision as of 19:46, 28 August 2005
|
|
Visit L6a1's page at Knotilus!
Visit L6a1's page at the original Knot Atlas! | |
L6a1 is in the Rolfsen table of links. |
Knot presentations
Planar diagram presentation | X6172 X10,3,11,4 X12,8,5,7 X8,12,9,11 X2536 X4,9,1,10 |
Gauss code | {1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3} |
Polynomial invariants
Multivariable Alexander Polynomial (in , , , ...) | (db) |
Jones polynomial | (db) |
Signature | -1 (db) |
HOMFLY-PT polynomial | (db) |
Kauffman polynomial | (db) |
Vassiliev invariants
V2 and V3: | (0, ) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -1 is the signature of L6a1. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
In[1]:= |
<< KnotTheory` |
Loading KnotTheory` (version of August 17, 2005, 14:44:34)... | |
In[2]:= | Crossings[Link[6, Alternating, 1]] |
Out[2]= | 6 |
In[3]:= | PD[Link[6, Alternating, 1]] |
Out[3]= | PD[X[6, 1, 7, 2], X[10, 3, 11, 4], X[12, 8, 5, 7], X[8, 12, 9, 11], X[2, 5, 3, 6], X[4, 9, 1, 10]] |
In[4]:= | GaussCode[Link[6, Alternating, 1]] |
Out[4]= | GaussCode[{1, -5, 2, -6}, {5, -1, 3, -4, 6, -2, 4, -3}] |
In[5]:= | BR[Link[6, Alternating, 1]] |
Out[5]= | BR[Link[6, Alternating, 1]] |
In[6]:= | alex = Alexander[Link[6, Alternating, 1]][t] |
Out[6]= | ComplexInfinity |
In[7]:= | Conway[Link[6, Alternating, 1]][z] |
Out[7]= | ComplexInfinity |
In[8]:= | Select[AllKnots[], (alex === Alexander[#][t])&] |
Out[8]= | {} |
In[9]:= | {KnotDet[Link[6, Alternating, 1]], KnotSignature[Link[6, Alternating, 1]]} |
Out[9]= | {Infinity, -1} |
In[10]:= | J=Jones[Link[6, Alternating, 1]][q] |
Out[10]= | -(9/2) -(7/2) 3 2 2 3/2 |
In[11]:= | Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&] |
Out[11]= | {} |
In[12]:= | A2Invariant[Link[6, Alternating, 1]][q] |
Out[12]= | -16 2 -12 2 2 -6 -4 -2 2 6 |
In[13]:= | Kauffman[Link[6, Alternating, 1]][a, z] |
Out[13]= | 3 5 34 a a z 3 5 2 2 2 z 5 3 4 |
In[14]:= | {Vassiliev[2][Link[6, Alternating, 1]], Vassiliev[3][Link[6, Alternating, 1]]} |
Out[14]= | 53 |
In[15]:= | Kh[Link[6, Alternating, 1]][q, t] |
Out[15]= | 1 1 |