10 43: Difference between revisions
No edit summary |
DrorsRobot (talk | contribs) No edit summary |
||
Line 16: | Line 16: | ||
{{Knot Presentations}} |
{{Knot Presentations}} |
||
<center><table border=1 cellpadding=10><tr align=center valign=top> |
|||
<td> |
|||
[[Braid Representatives|Minimum Braid Representative]]: |
|||
<table cellspacing=0 cellpadding=0 border=0> |
|||
<tr><td>[[Image:BraidPart3.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart4.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart2.gif]][[Image:BraidPart3.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart4.gif]][[Image:BraidPart1.gif]][[Image:BraidPart1.gif]]</td></tr> |
|||
<tr><td>[[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart0.gif]][[Image:BraidPart2.gif]][[Image:BraidPart2.gif]]</td></tr> |
|||
</table> |
|||
[[Invariants from Braid Theory|Length]] is 10, width is 5. |
|||
[[Invariants from Braid Theory|Braid index]] is 5. |
|||
</td> |
|||
<td> |
|||
[[Lightly Documented Features|A Morse Link Presentation]]: |
|||
[[Image:{{PAGENAME}}_ML.gif]] |
|||
</td> |
|||
</tr></table></center> |
|||
{{3D Invariants}} |
{{3D Invariants}} |
||
{{4D Invariants}} |
{{4D Invariants}} |
||
{{Polynomial Invariants}} |
{{Polynomial Invariants}} |
||
=== "Similar" Knots (within the Atlas) === |
|||
Same [[The Alexander-Conway Polynomial|Alexander/Conway Polynomial]]: |
|||
{...} |
|||
Same [[The Jones Polynomial|Jones Polynomial]] (up to mirroring, <math>q\leftrightarrow q^{-1}</math>): |
|||
{[[10_91]], ...} |
|||
{{Vassiliev Invariants}} |
{{Vassiliev Invariants}} |
||
Line 42: | Line 74: | ||
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
<tr align=center><td>-11</td><td bgcolor=yellow>1</td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td> </td><td>-1</td></tr> |
||
</table>}} |
</table>}} |
||
{{Display Coloured Jones|J2=<math>q^{15}-3 q^{14}+q^{13}+9 q^{12}-16 q^{11}+34 q^9-41 q^8-12 q^7+77 q^6-65 q^5-37 q^4+120 q^3-74 q^2-63 q+139-63 q^{-1} -74 q^{-2} +120 q^{-3} -37 q^{-4} -65 q^{-5} +77 q^{-6} -12 q^{-7} -41 q^{-8} +34 q^{-9} -16 q^{-11} +9 q^{-12} + q^{-13} -3 q^{-14} + q^{-15} </math>|J3=<math>-q^{30}+3 q^{29}-q^{28}-4 q^{27}-2 q^{26}+13 q^{25}+3 q^{24}-26 q^{23}-9 q^{22}+48 q^{21}+23 q^{20}-77 q^{19}-55 q^{18}+117 q^{17}+102 q^{16}-153 q^{15}-174 q^{14}+183 q^{13}+265 q^{12}-199 q^{11}-367 q^{10}+193 q^9+474 q^8-175 q^7-562 q^6+129 q^5+645 q^4-90 q^3-679 q^2+20 q+713+20 q^{-1} -679 q^{-2} -90 q^{-3} +645 q^{-4} +129 q^{-5} -562 q^{-6} -175 q^{-7} +474 q^{-8} +193 q^{-9} -367 q^{-10} -199 q^{-11} +265 q^{-12} +183 q^{-13} -174 q^{-14} -153 q^{-15} +102 q^{-16} +117 q^{-17} -55 q^{-18} -77 q^{-19} +23 q^{-20} +48 q^{-21} -9 q^{-22} -26 q^{-23} +3 q^{-24} +13 q^{-25} -2 q^{-26} -4 q^{-27} - q^{-28} +3 q^{-29} - q^{-30} </math>|J4=<math>q^{50}-3 q^{49}+q^{48}+4 q^{47}-3 q^{46}+5 q^{45}-16 q^{44}+5 q^{43}+22 q^{42}-12 q^{41}+13 q^{40}-64 q^{39}+13 q^{38}+89 q^{37}-9 q^{36}+23 q^{35}-211 q^{34}-15 q^{33}+242 q^{32}+95 q^{31}+103 q^{30}-539 q^{29}-225 q^{28}+425 q^{27}+420 q^{26}+448 q^{25}-992 q^{24}-781 q^{23}+391 q^{22}+923 q^{21}+1262 q^{20}-1297 q^{19}-1640 q^{18}-100 q^{17}+1336 q^{16}+2463 q^{15}-1193 q^{14}-2480 q^{13}-992 q^{12}+1399 q^{11}+3678 q^{10}-701 q^9-2982 q^8-1951 q^7+1097 q^6+4523 q^5-48 q^4-3036 q^3-2678 q^2+577 q+4821+577 q^{-1} -2678 q^{-2} -3036 q^{-3} -48 q^{-4} +4523 q^{-5} +1097 q^{-6} -1951 q^{-7} -2982 q^{-8} -701 q^{-9} +3678 q^{-10} +1399 q^{-11} -992 q^{-12} -2480 q^{-13} -1193 q^{-14} +2463 q^{-15} +1336 q^{-16} -100 q^{-17} -1640 q^{-18} -1297 q^{-19} +1262 q^{-20} +923 q^{-21} +391 q^{-22} -781 q^{-23} -992 q^{-24} +448 q^{-25} +420 q^{-26} +425 q^{-27} -225 q^{-28} -539 q^{-29} +103 q^{-30} +95 q^{-31} +242 q^{-32} -15 q^{-33} -211 q^{-34} +23 q^{-35} -9 q^{-36} +89 q^{-37} +13 q^{-38} -64 q^{-39} +13 q^{-40} -12 q^{-41} +22 q^{-42} +5 q^{-43} -16 q^{-44} +5 q^{-45} -3 q^{-46} +4 q^{-47} + q^{-48} -3 q^{-49} + q^{-50} </math>|J5=<math>-q^{75}+3 q^{74}-q^{73}-4 q^{72}+3 q^{71}-2 q^{69}+8 q^{68}-q^{67}-17 q^{66}+5 q^{65}+13 q^{64}+4 q^{63}+12 q^{62}-18 q^{61}-52 q^{60}-12 q^{59}+63 q^{58}+86 q^{57}+43 q^{56}-83 q^{55}-210 q^{54}-133 q^{53}+136 q^{52}+380 q^{51}+325 q^{50}-121 q^{49}-637 q^{48}-689 q^{47}-25 q^{46}+929 q^{45}+1294 q^{44}+422 q^{43}-1192 q^{42}-2106 q^{41}-1211 q^{40}+1201 q^{39}+3146 q^{38}+2492 q^{37}-841 q^{36}-4191 q^{35}-4256 q^{34}-168 q^{33}+5047 q^{32}+6478 q^{31}+1863 q^{30}-5477 q^{29}-8880 q^{28}-4271 q^{27}+5245 q^{26}+11234 q^{25}+7269 q^{24}-4313 q^{23}-13276 q^{22}-10523 q^{21}+2664 q^{20}+14749 q^{19}+13865 q^{18}-531 q^{17}-15638 q^{16}-16843 q^{15}-1956 q^{14}+15848 q^{13}+19490 q^{12}+4414 q^{11}-15583 q^{10}-21374 q^9-6881 q^8+14811 q^7+22904 q^6+8939 q^5-13816 q^4-23551 q^3-10902 q^2+12396 q+24011+12396 q^{-1} -10902 q^{-2} -23551 q^{-3} -13816 q^{-4} +8939 q^{-5} +22904 q^{-6} +14811 q^{-7} -6881 q^{-8} -21374 q^{-9} -15583 q^{-10} +4414 q^{-11} +19490 q^{-12} +15848 q^{-13} -1956 q^{-14} -16843 q^{-15} -15638 q^{-16} -531 q^{-17} +13865 q^{-18} +14749 q^{-19} +2664 q^{-20} -10523 q^{-21} -13276 q^{-22} -4313 q^{-23} +7269 q^{-24} +11234 q^{-25} +5245 q^{-26} -4271 q^{-27} -8880 q^{-28} -5477 q^{-29} +1863 q^{-30} +6478 q^{-31} +5047 q^{-32} -168 q^{-33} -4256 q^{-34} -4191 q^{-35} -841 q^{-36} +2492 q^{-37} +3146 q^{-38} +1201 q^{-39} -1211 q^{-40} -2106 q^{-41} -1192 q^{-42} +422 q^{-43} +1294 q^{-44} +929 q^{-45} -25 q^{-46} -689 q^{-47} -637 q^{-48} -121 q^{-49} +325 q^{-50} +380 q^{-51} +136 q^{-52} -133 q^{-53} -210 q^{-54} -83 q^{-55} +43 q^{-56} +86 q^{-57} +63 q^{-58} -12 q^{-59} -52 q^{-60} -18 q^{-61} +12 q^{-62} +4 q^{-63} +13 q^{-64} +5 q^{-65} -17 q^{-66} - q^{-67} +8 q^{-68} -2 q^{-69} +3 q^{-71} -4 q^{-72} - q^{-73} +3 q^{-74} - q^{-75} </math>|J6=<math>q^{105}-3 q^{104}+q^{103}+4 q^{102}-3 q^{101}-3 q^{99}+10 q^{98}-12 q^{97}-4 q^{96}+24 q^{95}-15 q^{94}-7 q^{93}-14 q^{92}+41 q^{91}-19 q^{90}-11 q^{89}+76 q^{88}-50 q^{87}-61 q^{86}-84 q^{85}+114 q^{84}+4 q^{83}+51 q^{82}+267 q^{81}-100 q^{80}-258 q^{79}-428 q^{78}+93 q^{77}+38 q^{76}+368 q^{75}+991 q^{74}+160 q^{73}-589 q^{72}-1486 q^{71}-676 q^{70}-514 q^{69}+927 q^{68}+2996 q^{67}+1953 q^{66}-59 q^{65}-3288 q^{64}-3380 q^{63}-3684 q^{62}+116 q^{61}+6248 q^{60}+7223 q^{59}+4442 q^{58}-3376 q^{57}-7889 q^{56}-12321 q^{55}-6556 q^{54}+7111 q^{53}+15762 q^{52}+16748 q^{51}+4389 q^{50}-9267 q^{49}-25989 q^{48}-23875 q^{47}-2268 q^{46}+21250 q^{45}+35978 q^{44}+25627 q^{43}+1759 q^{42}-36928 q^{41}-50258 q^{40}-27884 q^{39}+13281 q^{38}+52984 q^{37}+57855 q^{36}+30871 q^{35}-33972 q^{34}-75218 q^{33}-65948 q^{32}-13251 q^{31}+56227 q^{30}+89484 q^{29}+72728 q^{28}-12794 q^{27}-87051 q^{26}-103813 q^{25}-51912 q^{24}+42116 q^{23}+108858 q^{22}+114021 q^{21}+19679 q^{20}-82554 q^{19}-129986 q^{18}-89788 q^{17}+17398 q^{16}+112929 q^{15}+143888 q^{14}+51839 q^{13}-67528 q^{12}-141491 q^{11}-117644 q^{10}-8262 q^9+106283 q^8+159774 q^7+76628 q^6-49230 q^5-141787 q^4-134096 q^3-30121 q^2+93967 q+164447+93967 q^{-1} -30121 q^{-2} -134096 q^{-3} -141787 q^{-4} -49230 q^{-5} +76628 q^{-6} +159774 q^{-7} +106283 q^{-8} -8262 q^{-9} -117644 q^{-10} -141491 q^{-11} -67528 q^{-12} +51839 q^{-13} +143888 q^{-14} +112929 q^{-15} +17398 q^{-16} -89788 q^{-17} -129986 q^{-18} -82554 q^{-19} +19679 q^{-20} +114021 q^{-21} +108858 q^{-22} +42116 q^{-23} -51912 q^{-24} -103813 q^{-25} -87051 q^{-26} -12794 q^{-27} +72728 q^{-28} +89484 q^{-29} +56227 q^{-30} -13251 q^{-31} -65948 q^{-32} -75218 q^{-33} -33972 q^{-34} +30871 q^{-35} +57855 q^{-36} +52984 q^{-37} +13281 q^{-38} -27884 q^{-39} -50258 q^{-40} -36928 q^{-41} +1759 q^{-42} +25627 q^{-43} +35978 q^{-44} +21250 q^{-45} -2268 q^{-46} -23875 q^{-47} -25989 q^{-48} -9267 q^{-49} +4389 q^{-50} +16748 q^{-51} +15762 q^{-52} +7111 q^{-53} -6556 q^{-54} -12321 q^{-55} -7889 q^{-56} -3376 q^{-57} +4442 q^{-58} +7223 q^{-59} +6248 q^{-60} +116 q^{-61} -3684 q^{-62} -3380 q^{-63} -3288 q^{-64} -59 q^{-65} +1953 q^{-66} +2996 q^{-67} +927 q^{-68} -514 q^{-69} -676 q^{-70} -1486 q^{-71} -589 q^{-72} +160 q^{-73} +991 q^{-74} +368 q^{-75} +38 q^{-76} +93 q^{-77} -428 q^{-78} -258 q^{-79} -100 q^{-80} +267 q^{-81} +51 q^{-82} +4 q^{-83} +114 q^{-84} -84 q^{-85} -61 q^{-86} -50 q^{-87} +76 q^{-88} -11 q^{-89} -19 q^{-90} +41 q^{-91} -14 q^{-92} -7 q^{-93} -15 q^{-94} +24 q^{-95} -4 q^{-96} -12 q^{-97} +10 q^{-98} -3 q^{-99} -3 q^{-101} +4 q^{-102} + q^{-103} -3 q^{-104} + q^{-105} </math>|J7=<math>-q^{140}+3 q^{139}-q^{138}-4 q^{137}+3 q^{136}+3 q^{134}-5 q^{133}-6 q^{132}+17 q^{131}-3 q^{130}-14 q^{129}+9 q^{128}+q^{127}+15 q^{126}-19 q^{125}-42 q^{124}+45 q^{123}+2 q^{122}-18 q^{121}+39 q^{120}+10 q^{119}+68 q^{118}-50 q^{117}-174 q^{116}+9 q^{115}-34 q^{114}+6 q^{113}+194 q^{112}+134 q^{111}+298 q^{110}-q^{109}-519 q^{108}-358 q^{107}-485 q^{106}-150 q^{105}+575 q^{104}+764 q^{103}+1339 q^{102}+731 q^{101}-838 q^{100}-1515 q^{99}-2494 q^{98}-1887 q^{97}+377 q^{96}+2138 q^{95}+4694 q^{94}+4538 q^{93}+1095 q^{92}-2545 q^{91}-7574 q^{90}-8898 q^{89}-4904 q^{88}+1197 q^{87}+10644 q^{86}+15725 q^{85}+12419 q^{84}+3589 q^{83}-12443 q^{82}-24513 q^{81}-24767 q^{80}-14354 q^{79}+9976 q^{78}+33315 q^{77}+42490 q^{76}+34050 q^{75}+732 q^{74}-38952 q^{73}-64124 q^{72}-63964 q^{71}-24136 q^{70}+35372 q^{69}+85468 q^{68}+104309 q^{67}+64412 q^{66}-16391 q^{65}-100501 q^{64}-151269 q^{63}-122458 q^{62}-24335 q^{61}+100193 q^{60}+197990 q^{59}+196910 q^{58}+90766 q^{57}-76908 q^{56}-235459 q^{55}-280827 q^{54}-182208 q^{53}+23931 q^{52}+253063 q^{51}+364974 q^{50}+294335 q^{49}+60477 q^{48}-243117 q^{47}-438222 q^{46}-417385 q^{45}-172982 q^{44}+200777 q^{43}+490054 q^{42}+540163 q^{41}+306167 q^{40}-127016 q^{39}-514316 q^{38}-651051 q^{37}-448164 q^{36}+27622 q^{35}+507971 q^{34}+740849 q^{33}+587933 q^{32}+88256 q^{31}-474510 q^{30}-804621 q^{29}-714236 q^{28}-209726 q^{27}+419379 q^{26}+841558 q^{25}+820830 q^{24}+326836 q^{23}-351732 q^{22}-854440 q^{21}-903552 q^{20}-432404 q^{19}+278527 q^{18}+848945 q^{17}+964114 q^{16}+521787 q^{15}-207664 q^{14}-830347 q^{13}-1003675 q^{12}-594982 q^{11}+140939 q^{10}+804347 q^9+1028826 q^8+653107 q^7-81995 q^6-773486 q^5-1040657 q^4-700076 q^3+26108 q^2+739188 q+1045555+739188 q^{-1} +26108 q^{-2} -700076 q^{-3} -1040657 q^{-4} -773486 q^{-5} -81995 q^{-6} +653107 q^{-7} +1028826 q^{-8} +804347 q^{-9} +140939 q^{-10} -594982 q^{-11} -1003675 q^{-12} -830347 q^{-13} -207664 q^{-14} +521787 q^{-15} +964114 q^{-16} +848945 q^{-17} +278527 q^{-18} -432404 q^{-19} -903552 q^{-20} -854440 q^{-21} -351732 q^{-22} +326836 q^{-23} +820830 q^{-24} +841558 q^{-25} +419379 q^{-26} -209726 q^{-27} -714236 q^{-28} -804621 q^{-29} -474510 q^{-30} +88256 q^{-31} +587933 q^{-32} +740849 q^{-33} +507971 q^{-34} +27622 q^{-35} -448164 q^{-36} -651051 q^{-37} -514316 q^{-38} -127016 q^{-39} +306167 q^{-40} +540163 q^{-41} +490054 q^{-42} +200777 q^{-43} -172982 q^{-44} -417385 q^{-45} -438222 q^{-46} -243117 q^{-47} +60477 q^{-48} +294335 q^{-49} +364974 q^{-50} +253063 q^{-51} +23931 q^{-52} -182208 q^{-53} -280827 q^{-54} -235459 q^{-55} -76908 q^{-56} +90766 q^{-57} +196910 q^{-58} +197990 q^{-59} +100193 q^{-60} -24335 q^{-61} -122458 q^{-62} -151269 q^{-63} -100501 q^{-64} -16391 q^{-65} +64412 q^{-66} +104309 q^{-67} +85468 q^{-68} +35372 q^{-69} -24136 q^{-70} -63964 q^{-71} -64124 q^{-72} -38952 q^{-73} +732 q^{-74} +34050 q^{-75} +42490 q^{-76} +33315 q^{-77} +9976 q^{-78} -14354 q^{-79} -24767 q^{-80} -24513 q^{-81} -12443 q^{-82} +3589 q^{-83} +12419 q^{-84} +15725 q^{-85} +10644 q^{-86} +1197 q^{-87} -4904 q^{-88} -8898 q^{-89} -7574 q^{-90} -2545 q^{-91} +1095 q^{-92} +4538 q^{-93} +4694 q^{-94} +2138 q^{-95} +377 q^{-96} -1887 q^{-97} -2494 q^{-98} -1515 q^{-99} -838 q^{-100} +731 q^{-101} +1339 q^{-102} +764 q^{-103} +575 q^{-104} -150 q^{-105} -485 q^{-106} -358 q^{-107} -519 q^{-108} - q^{-109} +298 q^{-110} +134 q^{-111} +194 q^{-112} +6 q^{-113} -34 q^{-114} +9 q^{-115} -174 q^{-116} -50 q^{-117} +68 q^{-118} +10 q^{-119} +39 q^{-120} -18 q^{-121} +2 q^{-122} +45 q^{-123} -42 q^{-124} -19 q^{-125} +15 q^{-126} + q^{-127} +9 q^{-128} -14 q^{-129} -3 q^{-130} +17 q^{-131} -6 q^{-132} -5 q^{-133} +3 q^{-134} +3 q^{-136} -4 q^{-137} - q^{-138} +3 q^{-139} - q^{-140} </math>}} |
|||
{{Computer Talk Header}} |
{{Computer Talk Header}} |
||
Line 49: | Line 84: | ||
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
<td align=left><pre style="color: red; border: 0px; padding: 0em"><< KnotTheory`</pre></td> |
||
</tr> |
</tr> |
||
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August |
<tr valign=top><td colspan=2><pre style="border: 0px; padding: 0em">Loading KnotTheory` (version of August 29, 2005, 15:27:48)...</pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Crossings[Knot[10, 43]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[2]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>PD[Knot[10, 43]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[2]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[20, 11, 1, 12], |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>PD[X[4, 2, 5, 1], X[10, 4, 11, 3], X[14, 8, 15, 7], X[20, 11, 1, 12], |
|||
X[12, 19, 13, 20], X[8, 14, 9, 13], X[18, 15, 19, 16], |
X[12, 19, 13, 20], X[8, 14, 9, 13], X[18, 15, 19, 16], |
||
X[16, 5, 17, 6], X[6, 17, 7, 18], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
X[16, 5, 17, 6], X[6, 17, 7, 18], X[2, 10, 3, 9]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 43]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[3]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>GaussCode[Knot[10, 43]]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[3]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>GaussCode[1, -10, 2, -1, 8, -9, 3, -6, 10, -2, 4, -5, 6, -3, 7, -8, 9, |
|||
-7, 5, -4]</nowiki></pre></td></tr> |
-7, 5, -4]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BR[Knot[10, 43]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[4]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>DTCode[Knot[10, 43]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[4]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>DTCode[4, 10, 16, 14, 2, 20, 8, 18, 6, 12]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[5]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>br = BR[Knot[10, 43]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 4, -3, 4, 4}]</nowiki></pre></td></tr> |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[5]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>BR[5, {-1, -1, 2, -1, -3, 2, 4, -3, 4, 4}]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 43]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[6]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{First[br], Crossings[br]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[6]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{5, 10}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>BraidIndex[Knot[10, 43]]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[7]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>5</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Show[DrawMorseLink[Knot[10, 43]]]</nowiki></pre></td></tr><tr><td></td><td align=left>[[Image:10_43_ML.gif]]</td></tr><tr valign=top><td><tt><font color=blue>Out[8]=</font></tt><td><tt><font color=black>-Graphics-</font></tt></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[9]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>(#[Knot[10, 43]]&) /@ {SymmetryType, UnknottingNumber, ThreeGenus, BridgeIndex, SuperBridgeIndex, NakanishiIndex}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{FullyAmphicheiral, 2, 3, 2, NotAvailable, 1}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[10]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>alex = Alexander[Knot[10, 43]][t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[10]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -3 7 17 2 3 |
|||
23 - t + -- - -- - 17 t + 7 t - t |
23 - t + -- - -- - 17 t + 7 t - t |
||
2 t |
2 t |
||
t</nowiki></pre></td></tr> |
t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[7]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 43]][z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Conway[Knot[10, 43]][z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[11]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 4 6 |
|||
1 + 2 z + z - z</nowiki></pre></td></tr> |
1 + 2 z + z - z</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[8]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (alex === Alexander[#][t])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[12]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 43]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[9]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{73, 0}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{KnotDet[Knot[10, 43]], KnotSignature[Knot[10, 43]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[ |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[13]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{73, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Jones[Knot[10, 43]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[14]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -5 3 6 9 11 2 3 4 5 |
|||
13 - q + -- - -- + -- - -- - 11 q + 9 q - 6 q + 3 q - q |
13 - q + -- - -- + -- - -- - 11 q + 9 q - 6 q + 3 q - q |
||
4 3 2 q |
4 3 2 q |
||
q q q</nowiki></pre></td></tr> |
q q q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[11]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[15]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Select[AllKnots[], (J === Jones[#][q] || (J /. q-> 1/q) === Jones[#][q])&]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{Knot[10, 43], Knot[10, 91]}</nowiki></pre></td></tr> |
|||
<math>\textrm{Include}(\textrm{ColouredJonesM.mhtml})</math> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[12]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 43]][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[16]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>A2Invariant[Knot[10, 43]][q]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[16]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -16 -12 2 2 -4 3 2 4 8 10 |
|||
-1 - q + q - --- + -- - q + -- + 3 q - q + 2 q - 2 q + |
-1 - q + q - --- + -- - q + -- + 3 q - q + 2 q - 2 q + |
||
10 8 2 |
10 8 2 |
||
Line 92: | Line 148: | ||
12 16 |
12 16 |
||
q - q</nowiki></pre></td></tr> |
q - q</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[13]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 43]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[17]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>HOMFLYPT[Knot[10, 43]][a, z]</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[17]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 2 |
|||
-4 2 2 4 2 z 4 z 2 2 4 2 4 |
|||
-1 - a + -- + 2 a - a - 4 z - -- + ---- + 4 a z - a z - 3 z + |
|||
2 4 2 |
|||
a a a |
|||
4 |
|||
2 z 2 4 6 |
|||
---- + 2 a z - z |
|||
2 |
|||
a</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[18]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kauffman[Knot[10, 43]][a, z]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[18]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> 2 |
|||
-4 2 2 4 z 3 z 5 2 3 z |
-4 2 2 4 z 3 z 5 2 3 z |
||
-1 - a - -- - 2 a - a + -- - --- - 3 a z + a z + 8 z + ---- + |
-1 - a - -- - 2 a - a + -- - --- - 3 a z + a z + 8 z + ---- + |
||
Line 122: | Line 192: | ||
a 2 a |
a 2 a |
||
a</nowiki></pre></td></tr> |
a</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[14]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 43]], Vassiliev[3][Knot[10, 43]]}</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[19]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>{Vassiliev[2][Knot[10, 43]], Vassiliev[3][Knot[10, 43]]}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: |
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[19]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>{2, 0}</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[15]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 4 2 5 4 |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[20]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>Kh[Knot[10, 43]][q, t]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[20]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki>7 1 2 1 4 2 5 4 |
|||
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
- + 7 q + ------ + ----- + ----- + ----- + ----- + ----- + ----- + |
||
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
q 11 5 9 4 7 4 7 3 5 3 5 2 3 2 |
||
Line 137: | Line 209: | ||
7 4 9 4 11 5 |
7 4 9 4 11 5 |
||
q t + 2 q t + q t</nowiki></pre></td></tr> |
q t + 2 q t + q t</nowiki></pre></td></tr> |
||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>In[21]:=</nowiki></pre></td><td><pre style="color: red; border: 0px; padding: 0em"><nowiki>ColouredJones[Knot[10, 43], 2][q]</nowiki></pre></td></tr> |
|||
<tr valign=top><td><pre style="color: blue; border: 0px; padding: 0em"><nowiki>Out[21]= </nowiki></pre></td><td><pre style="color: black; border: 0px; padding: 0em"><nowiki> -15 3 -13 9 16 34 41 12 77 65 37 |
|||
139 + q - --- + q + --- - --- + -- - -- - -- + -- - -- - -- + |
|||
14 12 11 9 8 7 6 5 4 |
|||
q q q q q q q q q |
|||
120 74 63 2 3 4 5 6 |
|||
--- - -- - -- - 63 q - 74 q + 120 q - 37 q - 65 q + 77 q - |
|||
3 2 q |
|||
q q |
|||
7 8 9 11 12 13 14 15 |
|||
12 q - 41 q + 34 q - 16 q + 9 q + q - 3 q + q</nowiki></pre></td></tr> |
|||
</table> |
</table> |
||
See/edit the [[Rolfsen_Splice_Template]]. |
|||
[[Category:Knot Page]] |
[[Category:Knot Page]] |
Revision as of 17:16, 29 August 2005
|
|
Visit 10 43's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)
Visit 10 43's page at Knotilus! Visit 10 43's page at the original Knot Atlas! |
Knot presentations
Planar diagram presentation | X4251 X10,4,11,3 X14,8,15,7 X20,11,1,12 X12,19,13,20 X8,14,9,13 X18,15,19,16 X16,5,17,6 X6,17,7,18 X2,10,3,9 |
Gauss code | 1, -10, 2, -1, 8, -9, 3, -6, 10, -2, 4, -5, 6, -3, 7, -8, 9, -7, 5, -4 |
Dowker-Thistlethwaite code | 4 10 16 14 2 20 8 18 6 12 |
Conway Notation | [212212] |
Length is 10, width is 5. Braid index is 5. |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["10 43"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 73, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {...}
Same Jones Polynomial (up to mirroring, ): {10_91, ...}
Vassiliev invariants
V2 and V3: | (2, 0) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of 10 43. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
See/edit the Rolfsen_Splice_Template.